积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(24)Greenplum(24)

语言

全部中文(简体)(24)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 24 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Pivotal Greenplum 最佳实践分享

    对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响;  对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息;  对于频繁创建表删表的系统,可关闭gp_autostate_mode(on_no_stats=> on_change) on_change – gp_autostats_on_change_threshold = 5000000(资料依据项目而定)  Truncate操作不会丢失字段级统计信息,在适当条件下可仅针对系统字段执行Analyze 垃圾空间回收 • GPDB采用MVCC机制,UPDATE 或 DELETE并非物理删除,而只是对无效记 录做标记; • Update/delete操 垃圾空间浪费存储空间 o 垃圾空间影响查询性能 注:delete all用truncate代替,truncate无需回收垃圾空间 垃圾空间回收  Vacuum:标记垃圾空间为可再利用 Vacuum用于将数据表垃圾空间标记到FSM(自由空间映射),一般也不回收空间,当往该表插入新数据时,数据库会重 新这些空间。 FSM驻留在内存中,FSM的大小必须足够标
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    计算、镜像复制、健康探测等等诸 多任务。 在 Greenplum 开源以前,据说一些厂商也有开发 MPP 数据库的打算, 其中最难的部分就是在 Interconnect 上遇到了障碍,可见这项技术的 关键性。 Greenplum 集群架构 Big Date2.indd 3 16-11-22 下午3:38 4 2. Greenplum 为什么选择 Postgreeql 做轮子 说到这,也许有同学会问,为什么 计算的功能也无能为力,就其因估计还是受到 mysql 在这方面限制。 3) 扩展性方面,Postgresql 比 mysql 也要出色许多,Postgres 天生就 是 为 扩 展 而 生 的, 你 可 以 在 PG 中 用 Python、C、Perl、TCL、 PLSQL 等等语言来扩展功能,在后续章节中,我将展现这种扩展 是如何的方便,另外,开发新的功能模块、新的数据类型、新的索 引类型等等非常方便,只要按照 在诸如 ACID 事物处理、数据强一致性保证、数据类型支持、独特 的 MVCC 带来高效数据更新能力等还有很多方面,Postgresql 似 乎在这些 OLAP 功能上都比 mysql 更甚一筹。 5) Postgresql 许可是仿照 BSD 许可模式的,没有被大公司控制,社区 比较纯洁,版本和路线控制非常好,基于 Postgresql 可让用户拥有 更多自主性。反观 Mysql 的社区现状和众多分支(如
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum分布式事务和两阶段提交协议

    数据库系统的实现 Atomic 原子性 事务中的操作要么全部正确执行,要么完全不 执行。 Write Ahead Logging,分布式事务:两阶段提交协议 Consistency 一致性 数据库系统必须保证事务的执行使得数据库 从一个一致性状态转移到另一个一致性状态。 (满足完整性约束) 实现对A、I、D三个属性的支持 Isolation 隔离性 多个事务并发地执行,对每个事务来说,它并 Locking, 2PL)、乐观并发控制 (OCC) Durability 持久性 一个事务在提交之后,该事务对数据库的改变 是持久的。 Write Ahead Logging + 存储管理 Jim Gray于1981年VLDB描述了事务的原子性、一致性和持久性,在此基础上,Haerder和Reuter在1983年中提出了事务的隔离性并提出术语 “ACID”,自此,事务的ACID四个性质成为业内标准术语 查询、更新 用户/ 应用 DDL命令 数据库管理员 数据、元数据、索引 日志页 读、写页 元数据、 统计数据 元数据 9 存储介质的类型 ■ Volatile storage 易失性存储器 DRAM, Cache, Register ■ Non-volatile storage 非易失性存储器 Disk, SSD, NVM ■ Stable stage 稳定存储器 theoretically
    0 码力 | 42 页 | 2.12 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    ..................................................................................... - 126 - 分区选择性的诊断 ................................................................................................ 种工作模式,但由于时区和语言文化等诸多差异,沟通链路较长,时间较久,研发的本 地化,使得沟通的效率大大提高。 GP 是一个纯软件实现的 MPP 数据库产品,采用 Share-Nothing 架构,可管理和 处理分布在多个不同主机上的大规模数据集。对于 GP 数据库来说,一个数据库集群是 由多个独立的 PostgreSQL 实例构成的,它们分布在不同的主机上,实例之间协同工 作,用户可以像使用一个普通的单机数据库那样,进行访问和执行 的安装部署要求,必须使用万兆 网络作为内部互联网络,否则,一定会遭受很多网络方面的困扰。 在缺省情况下,网络层使用 UDPIFC 协议。这是经过改善的 UDP 协议,在 UDP 协 议的基础上增强了数据包校验,其可靠性与 TCP 协议相似,但其性能和扩展性远好于 TCP 协议。当集群规模较小,同时,网络的稳定性较差的时候,如果 UDPIFC 协议不 稳定,可以考虑使用 TCP 协议,例如只有几十台主机时。通常,还是强烈建议配备稳
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    ................................................................................ 5 openEuler 面向多样性算计算的创新 ............................................................................................. 简称“欧拉”)编译测试了高级分 析数据平台 Greenplum,用实践证明了 Greenplum 与支持多样性计算的欧拉开源操作系统完全兼容,是 Greenplum 与中国本地 IT 厂商的深入合作的典型模板,大大丰富了中国本地国产化应用生态。本白皮书着眼介绍了欧拉开源操作系 统平台架构、创新性及核心特点, 同时介绍了 Greenplum 作为一款深受技术爱好者喜爱的、中立的纯开源软件,践行 “Run 成功测试运行所做努力贡献的人员表示感谢! 摘要 Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum机器学习⼯具集和案例

    k、Ka,a • 各种数据格式:结构化、半结构化(JSON/XML/Hstore)、非结构化 • 强大内核: MPP、优化器、多态存储、灵活分区、高速加载、PG内核 • 强大的灵活性、可扩展:PL/X、Extension、PXF、外部表机制 • 完善的标准支持:SQL、JDBC、ODBC • 集成数据平台:BI/DW、文本、GIS、图、图像、机器学习 • 开放源代码,持续大力投入 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 ● 机器器学习 ● 图形分析 ● 统计分析 MPP系统上的可扩展应⽤用 Apache上的开源项⽬目 ● 发布了了 6 个版本 ● Apache 顶级项⽬目 Pivotal Greenplum Neighbors • k-Nearest Neighbors 成熟的数据科学学习库 2017.thegiac.com • 更好的并行度 • 算法充分利用 MPP 架构实现并行 • 更好的可扩展性 • 算法随着数据扩充而线性扩展 • 更高的预测精准度 • 适用更多数据,而不是抽样 • 顶级 ASF 开源项目 • 社区驱动开发模式 MADlib 特性 2017
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    10 10 16 38 38 39 39 39 40 43 44 45 46 47 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 产品架构 产品架构 云数据仓库产品架构 ⾼可⽤ 快速上⼿ 快速上⼿ ⼀、创建数据仓库 ⼆、连接数据仓库 操作指南 操作指南 关闭数据仓库 启动数据仓库 重启数据仓库 查看数据仓库详情 扩容数据仓库 更改数据仓库密码 续费 Compute Node: Compute Node 管理节点的计算和存储资源 每个 Compute Node 由多个 Segment 组成 Segment 负责业务数据的存储、⽤⼾ SQL 的执⾏ ⾼可⽤ ⾼可⽤ 产品架构 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 8/206 如上图所⽰: 1. Compute Node 中任⼀ Segment 选择数据仓库类型:Greenplum 是 EMC 开源的数据仓库产品、Udpg 是基于 PostgreSQL 开发的⼤规模并⾏、完全托管的 PB 级数据仓库服务。 选择节点个数:UDW 是分布式架构、所有节点数据都是双机热备,实际可⽤总容量略⼩于节点个数*节点磁盘⼤⼩/2,请根据实际数据⼤⼩选择合适的节点。 3.设置数据仓库信息 必选项有数据仓库名称、DB管理员⽤⼾名、管理员密码。可选项有默认DB,默认DB的名称为dev,你
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    Greenplum 6: 混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary Greenplum POSTGIS 函数 st_distance_sphere() and st_makepoint() 计算给定经纬 度方圆2KM的范围 GPText.search() 函数可 以知道是否一个人在 Pivotal工作 Greenplum MADlib BFS 算法可以 知道两个之间是否有直接联系 Greenplum模糊字符串匹 配函数Soundex() 可以 知道姓名是否发音是 processing - 联机事务处理 出色的OLTP特性 天生的优势 ● 行式存储 ● 索引 ● 直接分发 ● 完整的增删改 Greenplum 6 增强 ● 并发修改、删除 ● 系统性的优化事务和锁 26 Pivotal Confidential–Internal Use Only 行式存储 表‘SALES’ 表‘SALES’ ■ 更适合OLTP负载 ■ 高效更改和删除
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Greenplum 介绍

    展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习新的数据库处理技术,人力成本也能够大大降低。 ● 处理和分析各种数据源的数据的平台:支持各种数据源,包括 Kafka、Hadoop、HIVE、 HBase、S3、Gemfire、各种数据库和文件等,不需要移动数据,避免了数据加载的复杂 性,和其带来的数据不一致的问题。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、多态存储、资源管理、高可用、高速数据加载等。 ● 具备强大灵活性和可扩展性的平台: 支持扩展(Extension)、自定义类型和函数、PXF 和外部表技术。可以使用多种语言实现用户自定义函数和聚集,包括 PL/Python、PL/R、 PL/Java、PL/Perl、PL/PGSQL
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    Greenplum 5。本白皮书着眼介绍 Greenplum 5 的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多 机器学习 AI SQL 大规模 并行处理 (MPP) PB 级数据 加载 查询 优化器 (GPORCA) Workload Manager 多态存储 Command Center SQL 兼容性 (Hyper-Q) PostgreSQL 内核 JSON、Apache AVRO、Apache Parquet 和 XML 结构化数据 pivotal.io/cn 白皮书 5 © Copyright 中,这种不受限于基础架构的方法的大部分优势都 具有同样强大的作用。在 Greenplum Database 上部署分析系统时,用户还可获得一些额外的优势: • Greenplum Database 可消除平台 / 供应商制约。用户可通过不同供应商获得针对 Greenplum 的服务和支持。 • Greenplum Database 在开发时采用的是以社区 / 客户为焦点的开发模式。客户可通过多种开放可用的方法对总
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PivotalGreenplum最佳实践分享精粹文集分布布式分布式事务阶段提交协议Database管理管理员指南完全兼容欧拉开源操作系统操作系统HTAP数据平台机器学习案例仓库数据仓库UDWUCloud中立计算服务服务商混合负载理想介绍一代新一代
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩