Pivotal Greenplum 5: 新一代数据平台
5。本白皮书着眼介绍 Greenplum 5 的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高 是首个内核百分百基于 Greenplum Database 开源项目及其相关源代码的版本。这意味着,可以通 过 greenplum.org 网站下载和编译的版本以及通过 Pivotal Network 分发的打包版本将具有相同的内核(只有个别微小差 别)。这是两年来致力于与 PostgreSQL 8.3.23 集成的成果,目的在于扩展和融入以 Greenplum 为中心的生态系统和社 区。为了更好地贴合 PostgreSQL 可以更轻松地从最新版本(未来 的 PostgreSQL 9.X 和 10)中纳入 PostgreSQL 新增功能。 新一代 数据平台 IT 人员 开发 人员 业务 分析师 数据 科学家 灵活 部署 数据源和数据管道 Spring Cloud Data Flow ETL 本地存储 HDFSS 云对象 存储 GemFire Spark 其他 RDBMSes 多结构数据 PIVOTAL GREENPLUM0 码力 | 9 页 | 690.33 KB | 1 年前3Greenplum 介绍
能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 年开源以来,更是吸引了包括阿里云、百度云、中移动、旷世、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习0 码力 | 3 页 | 220.42 KB | 1 年前3Greenplum Database 管理员指南 6.2.1
.................................................................................. - 263 - 第十二章:安装部署与初始化 .............................................................................................. 系统的重要组件,在用户执行查询时,每个 Instance 都需要执行相 应的处理,网络层涉及到 Instance 之间的通信和数据传输,网络层可以使用标准的 以太网协议。不要认为网络只是连通作用,请按照 GP 的安装部署要求,必须使用万兆 网络作为内部互联网络,否则,一定会遭受很多网络方面的困扰。 在缺省情况下,网络层使用 UDPIFC 协议。这是经过改善的 UDP 协议,在 UDP 协 议的基础上增强了数据包校验,其可靠性与 定的网络环境,使用 UDPIFC 协议。 冗余与故障切换 GP 提供了避免单点故障的部署选项。本节讲述 GP 的冗余组件。 Instance 镜像 Master 镜像 网络层冗余 Instance 镜像 在部署 GP 系统时,可以选择配置 Mirror,如果初始化时没有配置 Mirror,后 期也可以再次添加 Mirror,当然,如果要删除已有的0 码力 | 416 页 | 6.08 MB | 1 年前3Greenplum机器学习⼯具集和案例
Storage Command Center SQL Compatibility (Hyper-Q) 2017.thegiac.com Greenplum ⼤大数据平台 • 一次打包,到处运行:裸机、私有云、公有云 • 各种数据源:Hadoop、S3、数据库、文件、Spark、Ka,a • 各种数据格式:结构化、半结构化(JSON/XML/Hstore)、非结构化 •0 码力 | 58 页 | 1.97 MB | 1 年前3Greenplum on Kubernetes 容器化MPP数据库
Interconnect高速网络 Segment主机部署多个Segment实例 (Primary Segment和Mirror Segment) Greenplum 部署方案 ● Master节点和Standby Master分机部署 ● Primary Segment节点和Mirror Segment节点分机部署 ● Mirroring部署方案 Segment Instance Segment ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理 ○ 故障检测及恢复 ○ 升级扩容 ● 容器化Greenplum存储管理 ○ 容器本地存储易失性 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理 ○ 故障检测及恢复 ○ 升级扩容 ● 容器化Greenplum存储管理 ○ 容器本地存储易失性0 码力 | 33 页 | 1.93 MB | 1 年前3Greenplum 精粹文集
供了编译后的模块开箱即用,如:oraface、postgis、pgcrypt 等, 对于其它模块,用户可以自行将 contrib 下的代码与 Greenplum 的 include 头文件编译后,将动态 so 库文件部署到所有节点就可进行测 试使用了。有些模块还是非常好用的,例如:oraface,基本上集成了 Oracle 常用的函数到 Greenplum 中,曾经在一次 PoC 测试中,用户 提供的 22 条 Oracle 的 fans,后续章节与大家分享)。 这些自定义函数部署到 Greenplum 后可用充分享受到实例级别的并行 性能优势,我们强烈建议用户将库外的处理逻辑,部署到用 MPP 数 据库的 UDF 这种 In-Database 的方式来处理,你将获得意想不到的性 能和方便性;例如我们在某客户实现的数据转码、数据脱敏等,只需 要简单的改写原有代码后部署到 GP 中,通过并行计算获得数十倍性 能提高。 另外,GPTEXT(lucent Madlib(开源挖掘算法)、 SAS algorithm、R 都是通过 UDF 方式实现在 Greenplum 集群中分布 式部署,从而获得库内计算的并行能力。这里可以分享的是,SAS 曾 经做过测试,对 1 亿条记录做逻辑回归,采用一台小型机耗时约 4 个 多小时,通过部署到 Greenplum 集群中,耗时不到 2 分钟就全部完成 了。以 GPEXT 为例,下图展现了 Solr 全文检索在 Greenplum0 码力 | 64 页 | 2.73 MB | 1 年前3完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum
openEuler 成功测试运行所做努力贡献的人员表示感谢! 摘要 Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 白皮书 7 白皮书 | 7 1. 引领内核创新 云原生调度增强:针对云场景在线和离线业务混合部署场景,创新 CPU 调度算法保障在线业务对 CPU 的实时抢占及抖 动抑制,创新业务优先级 00M 内存回收算法保障在线业务安全可靠运行。 • 新文件系统 EulerFS:面向非易失性内存的 KubeOS:云原生场景,实现 OS 容器化部署、运维,提供与业务容器一致的基于 K8S 的管理体验。 • 安全容器方案:iSulad+shimv2+StratoVirt 安全容器方案,相比传统 docker+qemu 方案,底噪和启动时间 优化 40%。 • 双平面部署工具 eqqo:ARM/X86 双平面混合集群 0S 高效一键式安装,百节点部署时间<15min。 3. 探索场景创新0 码力 | 17 页 | 2.04 MB | 1 年前3深度揭秘Greenplum开源数据库透明加密
GPDB数据透明加解密流程 5. 总结 我们所面临的问题 什么是Greenplum数据库 一款开源的HTAP数据库: • MPP架构 • 完整的事务+ACID+标准SQL支持 • 支持上千个节点的部署 • 支持PB级文件 • 丰富的ETL和外部组件 • 支持Python/R/Java直接访问处理数据库数据 • https://github.com/greenplum-db/gpdb GPDB 数据需要加密 • 机密数据 • 知识产权保护 • 审计要求 用户数据存在直接暴露的风险 • 非部门员工运维(原厂,主机厂或者合作伙伴) • 事后审计难度很大 • 服务器数据被盗(托管或云部署) 用户的问题 现有解决方案 基于操作的系统的硬盘加密 • 只能防范服务器硬盘被盗 • 对运维安全无能为力 基于pgcypto的加密 • 可以满足数据安全要求 • 非原生方案 • 问题很多 • 支持上千个节点的部署 • 支持PB级文件 • 丰富的ETL和外部组件 • 支持Python/R/Java直接访问处理数据库数据 • https://github.com/greenplum-db/gpdb Recall pgcypto的问题 一款开源的HTAP数据库: • MPP架构 • 完整的事务+ACID+标准SQL支持 • 支持上千个节点的部署 • 支持PB级文件0 码力 | 48 页 | 10.19 MB | 1 年前3并行不悖- OLAP 在互联网公司的实践与思考
Greenplum运维体系 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市) 如需扩展,有多种扩展方式可以选择 Ø 理论扩展方式,与建议扩展方式 • 常见扩展方式 Ø 对现有集群直接加服务器进行扩展(先要把握现有集群架构) Ø 在现有服务器和新服务器上,建立新集群然后扩展 Ø 新部署集群,与现有集群双跑运行,稳定扩展(建议方式) 42 Greenplum扩展规划 Greenplum集群规划 • 业务运营越来越重要 Ø OLAP是根据历史数据,进行准确的统计计算 Ø 考0 码力 | 43 页 | 9.66 MB | 1 年前3Greenplum 6新特性: 在线扩容工具GPexpand剖析
在线扩容工具GPexpand剖析 杜佳伦 (jdu@pivotal.io) 大纲 • Greenplum 集群部署 • GPExpand简介与具体用法 • Greenplum 6中GPExpand的改进与实现 Greenplum 集群部署 Greenplum 集群部署 • gp_segment_configuration 字段名 描述 dbid 每个节点的唯一id content port 该节点的运行端口 hostname 节点的hostname address 通常和hostname相同 datadir 该节点的数据目录 Greenplum 集群部署 Greenplum 集群部署 • gp_distribution_policy 字段名 描述 localoid 表的OID policytype 分布类型 ‘p’ 分区 ‘r’ 复制表 numsegments0 码力 | 37 页 | 1.12 MB | 1 年前3
共 15 条
- 1
- 2