积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)Apache Flink(8)

语言

全部英语(7)中文(简体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Time Abnormal System Behavior Detection”, USENIX Security '18 12 Interested in a more research-oriented project?
 Let’s discuss it during office hours. Vasiliki Kalavri | Boston University 2020 Dataset
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    sources Files, e.g. transaction logs Sockets IoT devices and sensors Databases and KV stores Message queues and brokers Where do stream processors read data from? 2 Challenges • can be distributed on the network • Failure handling: application needs to be aware of message loss, producers and consumers always online 5 Message queues • Asynchronous point-to-point communication • Lightweight buffer guarantees • Each message is processed only once, by a single consumer • Event retrieval is not defined by content / structure but its order • FIFO, priority producer consumer queue 6 Message brokers Message
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    } 51 / 79 updateStateByKey vs. mapWithState Example (1/3) ▶ The first micro batch contains a message a. ▶ updateStateByKey • updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum) • Input: 1 52 / 79 updateStateByKey vs. mapWithState Example (1/3) ▶ The first micro batch contains a message a. ▶ updateStateByKey • updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum) • Input: 1 52 / 79 updateStateByKey vs. mapWithState Example (1/3) ▶ The first micro batch contains a message a. ▶ updateStateByKey • updateFunc = (values: Seq[Int], state: Option[Int]) => Some(sum) • Input:
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    based on this event become visible. Once the event is created it is usually stored in a persistent message queue, before it is processed by Apache Flink, which then writes the results to a database or calls including the following: 1. It might take a varying amount of time until events are persisted in the message queue. caolei – 监控Apache Flink应用程序(入门) 进度和吞吐量监控 – 15 4 https://ci.apache.org/projects/flin html#latency-tracking 2. During periods of high load or during recovery, events might spend some time in the message queue until they are processed by Flink (see previous section). 3. Some operators in a streaming
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Dataflow worker activities worker 1 worker 2 worker 3 receive message deserialization processing serialization send message waiting waiting 13 ??? Vasiliki Kalavri | Boston University 2020
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    O1 O2 N’i I’1 I’2 O’1 O’2 • The communication network ensures order-preserving, reliable message transport, e.g. TCP. • Failures are single-node and fail- stop, i.e. no network partitions or
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operators, eventually reaching the data stream sources. • To ensure no data loss, a persistent input message queue, such as Kafka, and enough storage is required. 21 o1 src o2 back-pressure target: 40
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    own state. 2. Sends a marker out on each of its outgoing channels. a. The marker is a special message that is not recorded in the snapshot but enforces the causal consistency. 3. Starts recording event A happens causally before B and B is pre-snapshot, then A is also pre-snapshot When is a message included in the snapshot? Does the algorithm satisfy causality? ??? Vasiliki Kalavri | Boston
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
CourseintroductionCS591K1DataStreamProcessingandAnalyticsSpring2020ingestionpubsubsystemsScalableSparkStreamingFlink监控Apache应用程序应用程序入门ElasticitystatemigrationPartHighavailabilityrecoverysemanticsguaranteesFlowcontrolloadsheddingExactlyoncefaulttolerancein
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩