积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics

    availability, recovery semantics, and guarantees Vasiliki Kalavri | Boston University 2020 Today’s topics • High-availability and fault-tolerance in distributed stream processing • Recovery semantics and guarantees against failures and guarantee correct results after recovery? • how can we ensure minimal downtime and fast recovery? • how can we hide recovery side-effects from downstream applications? Vasiliki failures. 7 Vasiliki Kalavri | Boston University 2020 Recovery types 8 Vasiliki Kalavri | Boston University 2020 Recovery types • Precise recovery (exactly-once) • It hides the effects of a failure
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    K1: Data Stream Processing and Analytics Spring 2020 2/04: Streaming languages and operator semantics Vasiliki Kalavri | Boston University 2020 Vasiliki Kalavri | Boston University 2020 Languages Almost universally supported across streaming systems and languages albeit with various names and semantics • Allow un-blocking the processing of blocking operators by defining bounded portions of the Continuous queries on data streams • New streams (derived) are defined as virtual views in SQL • Semantics are equivalent to having an append-only table to which new tuples are continuously added. 34
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    missing, out-of-order, delayed data 4. Guarantee deterministic (on replay) and correct results (on recovery) 5. Combine batch (historical) and stream processing 6. Ensure availability despite failures streams that describe the changing view computed over the input stream according to the relational semantics of the operator. 19 Vasiliki Kalavri | Boston University 2020 • Base streams update relation streams that describe the changing view computed over the input stream according to the relational semantics of the operator. src dest bytes 1 2 20K 2 5 32K src dest total 1 2 20K 2 5 32K sum Results
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    alternatives • Runtime optimizations • load management, scheduling, state management • Optimization semantics, correctness, profitability Topics covered in this lecture ??? Vasiliki Kalavri | Boston University basics 4 Dataflow graph • operators are nodes, data channels are edges • channels have FIFO semantics • streams of data elements flow continuously along edges Operators • receive one or more conditions does the optimization preserve correctness? • maintain state semantics • maintain result and selectivity semantics • Dynamism: can the optimization be applied during runtime or does it
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    URLs that contain malware? • Filter out all compromised passwords? • Remove duplicate tuples on recovery when using upstream backup? The membership problem ??? Vasiliki Kalavri | Boston University 2020 URLs that contain malware? • Filter out all compromised passwords? • Remove duplicate tuples on recovery when using upstream backup? The membership problem A hash table requires O(logn) bits per element
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 41 Recovery process 1. Stop and restart the application. All operators have empty state. ??? Vasiliki Kalavri | Boston University 2020 42 Recovery process 1. Stop and restart Vasiliki Kalavri | Boston University 2020 End-to-end exactly once • Flink’s checkpointing and recovery mechanism only resets the internal state of a streaming application • Some result records might Vasiliki Kalavri | Boston University 2020 End-to-end exactly once • Flink’s checkpointing and recovery mechanism only resets the internal state of a streaming application • Some result records might
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    -release-1.7/monitoring/metrics.html#latency-tracking 2. During periods of high load or during recovery, events might spend some time in the message queue until they are processed by Flink (see previous
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    hash-based • Items are perfectly balanced among workers • No routing table required • Key semantics are not preserved: values of the same key might be routed to different workers • Workers are are responsible for roughly the same amount of keys • No routing table is required • Key semantics preserved: values of the same key are always processed by the same worker • Popular keys cause preserve the key semantics? 11 ??? Vasiliki Kalavri | Boston University 2020 The power of both choices • Applying the power of two choices in a streaming setting and preserving key semantics would require
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    consistent global snapshots (inspired by Chandy-Lamport). • Low runtime overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (1/2) ▶ Fault tolerance in Spark • RDD re-computation ▶ Fault tolerance consistent global snapshots (inspired by Chandy-Lamport). • Low runtime overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (1/2) ▶ Fault tolerance in Spark • RDD re-computation ▶ Fault tolerance consistent global snapshots (inspired by Chandy-Lamport). • Low runtime overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (2/2) ▶ Acks sequences of records instead of individual records. ▶
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    management Scalability and elasticity Fault-tolerance and guarantees State management Operator semantics Window optimizations Filtering, counting, sampling Graph streaming algorithms Vasiliki Kalavri
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
HighavailabilityrecoverysemanticsandguaranteesCS591K1DataStreamProcessingAnalyticsSpring2020StreaminglanguagesoperatorprocessingfundamentalsoptimizationsFilteringsamplingstreamsExactlyoncefaulttoleranceinApacheFlink监控应用程序应用程序入门SkewmitigationScalableSparkCourseintroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩