积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)Apache Flink(20)

语言

全部英语(18)中文(简体)(2)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    data streams Systems Algorithms Architecture and design Scheduling and load management Scalability and elasticity Fault-tolerance and guarantees State management Operator semantics Window end-to-end, scalable, and reliable streaming applications • have a solid understanding of how stream processing systems work and what factors affect their performance • be aware of the challenges and trade-offs trade-offs one needs to consider when designing and deploying streaming applications 6 Vasiliki Kalavri | Boston University 2020 Grading Scheme (1) • No Exam • 5 in-class quizzes (10%): • Each
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 • The JobManager is a single point of failure Flink applications • It keeps metadata about application execution, such as pointers to completed checkpoints. software version 9 Reconfiguration cases ??? Vasiliki Kalavri | Boston University 2020 Streaming applications are long-running • Workload will change • Conditions might change • State is accumulated re-partitioning and migration • minimize communication • keep duration short • minimize performance disruption, e.g. latency spikes • avoid introducing load imbalance • Resource management
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    – 监控Apache Flink应用程序(入门) – 4 原文地址:https://www.ververica.com/blog/monitoring-apache-flink-applications-101 这篇博文介绍了Apache Flink内置的监控和度量系统,通过该系统,开发人员可以有效地监控他们的Flink作 业。通常,对于一个刚刚开始使用Apache Flink进行流处 metrics.latency.granularity: subtask), enabling latency tracking can significantly impact the performance of the cluster. It is recommended to only enable it to locate sources of latency during debugging 1550652804788.1550652804788.1&__hssc=216506377.3.1551426921706&__hsfp=3017175250 hand, if you job’s performance is starting to degrade among the first metrics you want to look at are memory consumption and
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    placement decisions • different algorithms, e.g. hash-based vs. broadcast join • What does performance depend on? • input data, intermediate data • operator properties • How can we estimate the Boston University 2020 13 • Profitability: under what conditions does the optimization improve performance? • can the decision be automatic? • Safety: under what conditions does the optimization preserve A B C D ??? Vasiliki Kalavri | Boston University 2020 B 21 Profitability • Running two applications together on a single core, one with operators B and C, the other with operators B and D. Redundancy
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Elasticity policies and state migration ??? Vasiliki Kalavri | Boston University 2020 Streaming applications are long-running • Workload will change • Conditions might change • State is accumulated to apply the re-configuration? 3 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict requirements 7 ▸ Accuracy ▸ no over/under-provisioning ▸ Stability ▸ no oscillations ▸ Performance ▸ fast convergence scaling controller detect symptoms decide whether to scale decide
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    minimal downtime and fast recovery? • how can we hide recovery side-effects from downstream applications? Vasiliki Kalavri | Boston University 2020 What is a failure? op 1. receive an event 2. store Kalavri | Boston University 2020 Fault-tolerance trade-offs 12 Steady-state overhead • How is performance affected by the fault-tolerance mechanism under normal, failure- free operation? • How much been checkpointed, i.e. the user’s non- deterministic code is not re-executed Bloom filters for performance • Maintaining a catalog of all IDs ever seen and checking it for de-duplication is expensive
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Selectively drop records: • Temporarily trades-off result accuracy for sustainable performance. • Suitable for applications with strict latency constraints that can tolerate approximate results. Slow
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 What is a stream? • In traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is the total packets exchanged between two IP addresses • the collection of IP addresses accessing a web server 12 With some practical value for use-cases with append-only data It preserves all history Summary Today you learned: • stream representations, stream processing models • streaming applications and use-cases • different approaches to data management • the relational streaming model vs
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Stream Processing - Spark Streaming and Flink Amir H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design • The performance of these operation is proportional to the size of the state. ▶ mapWithState • It is executed only on set of keys that are available in the last micro batch. • The performance is proportional • The performance of these operation is proportional to the size of the state. ▶ mapWithState • It is executed only on set of keys that are available in the last micro batch. • The performance is proportional
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ 现在 Flink 1.9 的架构变化 Runtime Distributed Streaming Dataflow Query Processor DAG & StreamOperator offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ 未来 Micro Services O_0 O_1 I_0 I_1 I_2 P_0 P_1 P_2 S_0 S_1 Order Inventory Payment offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ ✔ 扫码加入社群 与志同道合的码友一起 Code Up 阿里云开发者社区 Apache Flink China 2群 粘贴二维码 谢谢!
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
CourseintroductionCS591K1DataStreamProcessingandAnalyticsSpring2020Faulttolerancedemoreconfiguration监控ApacheFlink应用程序应用程序入门StreamingoptimizationsElasticitystatemigrationPartHighavailabilityrecoverysemanticsguaranteesFlowcontrolloadsheddingprocessingfundamentalsScalableSpark过去现在未来
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩