积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(17)中文(简体)(2)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Software requirements • All assignments assume a UNIX-based setup. • If you are a Windows user, you are advised to use Windows subsystem for Linux (WSL), Cygwin, or a Linux virtual machine to impressions, clicks, transactions, likes, comments • Analytics on user activity • Filtering, aggregation, joins with static data (e.g. user profile data) Examples • online A/B testing • trending topics
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Synopsis: a lossy, compact summary of the input stream input stream synopsis maintenance component user queries approximate results ??? Vasiliki Kalavri | Boston University 2020 A simple and efficient fixed proportion of the stream, e.g. 1/10th 7 search engine <user, query, timestamp> query stream Example use-case: Web search user behavior study Q: How many queries did users repeat last month When a query arrives: • if the user is sampled: add the query to S • if we haven’t seen the user before: generate a random integer ru between 0 and 9 and add the user to the sample if ru = 0. ??? Vasiliki
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25 uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25 uk Connection: keep-alive Accept: text/html,application/ xhtml+xml,application/ xml;q=0.9,*/*;q=0.8 User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.22 (KHTML, like Gecko) Ubuntu Chromium/25
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    1.2.2 QuickStart: DataStream API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table Creation, listing Tables, Conversion between Table and DataStream, etc. • User-defined function management: User-defined function registration, dropping, listing, etc. • Executing SQL queries supports various UDFs and APIs to allow users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]:
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    1.2.2 QuickStart: DataStream API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table Creation, listing Tables, Conversion between Table and DataStream, etc. • User-defined function management: User-defined function registration, dropping, listing, etc. • Executing SQL queries supports various UDFs and APIs to allow users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]:
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    setParallelism() in your application. taskmanager.numberOfTaskSlots: The number of parallel operator or user function instances that a single TaskManager can run. This value is typically proportional to the run ./examples/batch/WordCount.jar \
 --input file:///home/user/hamlet.txt --output file:///home/user/wordcount_out Run with a class entry point and arguments:
 ./bin/flink run -c ./examples/batch/WordCount.jar \
 --input file:///home/user/hamlet.txt --output file:///home/user/wordcount_out 19 Flink commands Vasiliki Kalavri | Boston University 2020 Resources
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    程度。Flink可以从大多数source获得基本metrics。 4.10 关键指标 Metric Scope Description records-lag-max user applies to FlinkKafkaConsumer The maximum lag in terms of the number of records for any partition best indication that the consumer group is not keeping up with the producers. millisBehindLatest user applies to FlinkKinesisConsumer The number of milliseconds a consumer is behind the head of a time window) for functional reasons. 4. Each computation in your Flink topology (framework or user code), as well as each network shuffle, takes time and adds to latency. 5. If the application emits
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    增量 snapshot 基于 credit 的流控机制 Streaming SQL ------------------------- | USER_SCORES | ------------------------- | User | Score | Time | ------------------------- | Julie | 7 | 12:01 | | Frank -- | ---------------------------- Stream Mode: 12:01> SELECT Name, SUM(Score), MAX(Time) FROM USER_SCORES GROUP BY Name; Flink 在阿里的服务情况 集群规模 超万台 状态数据 PetaBytes 事件处理 十万亿/天 峰值能力 17亿/秒 Flink 的过去
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Mobile game application • input stream: user activity • output: rewards based on how fast the user meets goals • e.g. pop 500 bubbles within 1 minute and get extra life latency. Trade-offs 17 Vasiliki Kalavri | Boston University 2020 Periodic: periodically ask the user-defined function for the current watermark timestamp. Punctuated: check for a watermark in each
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    elements • The solution will not contain any item y with frequency: • freq(y) < (δ - ε)*N, for a user-chosen value ε
 4 (δ - ε)*Ν δ*Ν not included may be included included ??? Vasiliki Kalavri | Boston the item e in the input stream f: estimated frequency of item δ: user-defined threshold, so that freq(x)≥ δ*N,δ∈(0,1) ε: user-defined error
 Output: All items with frequency greater than or equal
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
CourseintroductionCS591K1DataStreamProcessingandAnalyticsSpring2020FilteringsamplingstreamsStreamingoptimizationsPyFlink1.15Documentation1.16IntroductiontoApacheKafka监控应用程序应用程序入门过去现在未来NotionsoftimeprogressSkewmitigation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩