积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(13)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/11: Windows and Triggers Vasiliki Kalavri | Boston University 2020 • Practical way to perform operations on API, you can use the time characteristic to tell Flink how to define time when you are creating windows. The time characteristic is a property of the StreamExecutionEnvironment: Configuring a time characteristic be applied on a keyed or a non-keyed stream: • Window operators on keyed windows are evaluated in parallel • Non-keyed windows are processed in a single thread To create a window operator, you need
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    (I) • Time-based (logical) windows define their contents as a function of time. • average price of items bought within the last 5 minutes • Count-based (physical) windows define their contents according Boston University 2020 Window types (II) • Fixed windows have bound which don’t move • events received between 1/1/2019 and 12/1/2019 • Landmark windows have a fixed lower bound and the upper bound advances events since 1/1/2019 • Sliding windows have fixed size but both their bounds advance for new events • last 10 events or event in the last minute • Tumble windows are non-overlapping fixed-size
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    joinedStream = stream1.join(stream2) 27 / 79 Join Operation (2/3) ▶ Stream-stream joins ▶ Joins over windows of the streams. val windowedStream1 = stream1.window(Seconds(20)) val windowedStream2 = stream2 ▶ Use groupBy() and window() to express windowed aggregations. // count words within 10 minute windows, updating every 5 minutes. // streaming DataFrame of schema {time: Timestamp, word: String} val calls format("console").start() query.awaitTermination() 66 / 79 Late Data (3/3) // count words within 10 minute windows, updating every 5 minutes. // streaming DataFrame of schema {timestamp: Timestamp, word: String}
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    extractTimestamp(MyEvent event) { return element.getCreationTime(); } } Windows (Not the OS) Global Vs Keyed Windows stream. .keyBy() .window() .reduce|a max)); } } Precombine Produce final result Lateness • By default, when using event-time windows, late events are dropped. stream. .keyBy(...) .window(...) .allowedLateness(Time.seconds(10))
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    properties 14 Vasiliki Kalavri | Boston University 2020 Watermarks are essential to both event-time windows and operators handling out-of-order events: • When an operator receives a watermark with time • It can then either trigger computation or order received events. 15 Evaluation of event-time windows Vasiliki Kalavri | Boston University 2020 16 http://streamingbook.net/fig/3-2 14 Vasiliki Kalavri
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Software requirements • All assignments assume a UNIX-based setup. • If you are a Windows user, you are advised to use Windows subsystem for Linux (WSL), Cygwin, or a Linux virtual machine to run Flink in
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 Which tuples to drop? • Window-aware load shedding applies shedding to entire windows instead of individual tuples • When discarding tuples at the sources or another point in a query a window-based concept drift. • The metric is defined by computing a similarity metric across windows. 18 ??? Vasiliki Kalavri | Boston University 2020 How many tuples to drop? • The amount of tuples
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • Stateful operators maintain state that reflect part of the stream history they have seen • windows, continuous aggregations, distinct… • State is commonly partitioned by key • State can be cleared
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stateful operators maintain state that reflect part of the stream history they have seen • windows, continuous aggregations, distinct… • State is commonly partitioned by key • State can be
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    less than (δ-ε)*N. 5 ??? Vasiliki Kalavri | Boston University 2020 Notation (II) • We define windows of size w = 1/ε with increasing numeric ids, starting from 1. • e.g., if ε=0.2, w=5 (5 items
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
WindowsandtriggersCS591K1DataStreamProcessingAnalyticsSpring2020StreaminglanguagesoperatorsemanticsScalableSparkFlinkinApacheNotionsoftimeprogressCourseintroductionFlowcontrolloadsheddingprocessingfundamentalsoptimizationsSkewmitigation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩