积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)Apache Flink(10)

语言

全部英语(10)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    communication, UDP multicast, TCP • HTTP or RPC if the consumer exposes a service on the network • Failure handling: application needs to be aware of message loss, producers and consumers always online 5 Message architecture advantages • Multiple producers/consumers as concurrent clients • Effective failure handling, crashes or disconnects • Broker responsible for message durability • Asynchronous communication messages are totally ordered but there is no ordering guarantee across partitions 28 29 Failure handling • The broker does not need to wait for acknowledgements any more, but simply record consumers'
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Watermarks are essential to both event-time windows and operators handling out-of-order events: • When an operator receives a watermark with time T, it can assume that no
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    15 The standard error of the LogLog algorithm is inversely related to the number of counters m: Standard error δ ≈ 1.3 m For m = 256, the error is about 8% For m = 1024, the error decreases to 4% Vasiliki Kalavri | Boston University 2020 26 • Query approximation error • Error probability Guarantee: The estimation error for frequencies will not exceed with probability • A higher number ⌈2.71828 ϵ ⌉ Error and space/time trade-offs ??? Vasiliki Kalavri | Boston University 2020 27 Space requirements ??? Vasiliki Kalavri | Boston University 2020 27 For a standard error of , we need
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    OverflowError: timeout value is too large . . . . . . . . . . . . . . . . . . . . 30 1.3.5.2 Q2: An error occurred while calling z:org.apache.flink.client.python.PythonEnvUtils.resetCallbackClient 30 1.3 factories.DynamicTableFactory’ in the classpath Exception Stack: py4j.protocol.Py4JJavaError: An error occurred while calling o13.execute. : org.apache.flink.table.api.ValidationException: Unable to create documentation. 1.3.4.2 O2: ClassNotFoundException: com.mysql.cj.jdbc.Driver py4j.protocol.Py4JJavaError: An error occurred while calling o13.execute. : org.apache.flink.runtime.client.JobExecutionException: Job execution
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    OverflowError: timeout value is too large . . . . . . . . . . . . . . . . . . . . 30 1.3.5.2 Q2: An error occurred while calling z:org.apache.flink.client.python.PythonEnvUtils.resetCallbackClient 30 1.3 factories.DynamicTableFactory’ in the classpath Exception Stack: py4j.protocol.Py4JJavaError: An error occurred while calling o13.execute. : org.apache.flink.table.api.ValidationException: Unable to create documentation. 1.3.4.2 O2: ClassNotFoundException: com.mysql.cj.jdbc.Driver py4j.protocol.Py4JJavaError: An error occurred while calling o13.execute. : org.apache.flink.runtime.client.JobExecutionException: Job execution
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    estimated frequency of item δ: user-defined threshold, so that freq(x)≥ δ*N,δ∈(0,1) ε: user-defined error
 Output: All items with frequency greater than or equal to δ*N. No item with frequency less than the current window id • We keep a list D of element frequencies and their maximum associated error. • Once a window fills up, we remove infrequent elements. 6 ??? Vasiliki Kalavri | Boston University in wcur: if x ∈ D, increase its frequency, fx = fx +1 else insert with frequency fx = 1 and error εx = wcur - 1 N = N + 1 Delete step Iterate over D and remove every element x with fx + εx
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    actual ??? Vasiliki Kalavri | Boston University 2020 parallelism initial rate target actual error p0 p1 prediction x x x DS2 model properties 24 ??? Vasiliki Kalavri | Boston University 2020 Boston University 2020 parallelism initial rate target actual p0 p1 x error p1’ new prediction Gradually minimizes error DS2 model properties 24 ??? Vasiliki Kalavri | Boston University 2020 25
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    scaled using approximate query processing techniques, where accuracy is measured in terms of relative error in the computed query answers. 17 ??? Vasiliki Kalavri | Boston University 2020 Which tuples to Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven load shedding: Reducing size and error of voluminous and variable data streams. (IEEE Big Data ’18) • H. T. Kung, T. Blackwell, and A.
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    footprint for accuracy • Query results are approximate with either deterministic or probabilistic error bounds • There is no universal synopsis solution • They are purpose-built and query-specific
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    or are discarded cpConfig.setCheckpointTimeout(300000); // do not fail the job on a checkpointing error cpConfig.setFailOnCheckpointingErrors(false); ??? Vasiliki Kalavri | Boston University 2020 Lecture
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
StreamingestionandpubsubsystemsCS591K1DataProcessingAnalyticsSpring2020NotionsoftimeprogressCardinalityfrequencyestimationPyFlink1.15Documentation1.16SkewmitigationElasticitystatemigrationPartFlowcontrolloadsheddingprocessingfundamentalsExactlyoncefaulttoleranceinApache
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩