积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)Apache Flink(18)

语言

全部英语(16)中文(简体)(2)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    I1 O1 N’i I1 Vasiliki Kalavri | Boston University 2020 Passive Standby • Each primary periodically checkpoints its state and sends it to the secondary 6 Ni primary secondary I1 O1 N’i update IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNk IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNk
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D.< = chan>=E.GE=D.< WHEN MAT(HE) AN) +LA,=H)H THEN )ELETE WHEN MAT(HE) AN) +LA,<>H)H ebezium 1lHLI W生支持 ./. 数据消费 -- BPDaRDs a mysOl BCB RaAlD sMSPBD .R0,T0 T,-L0 mysOl_AHLlMF HC INT NOT N=LL, LamD ;TRING, CDsBPHNRHML ;TRING, UDHFGR /0.I6,L '0,() ) WIT3 'BMLLDBRMP' = 'mysOl-BCB', 'GMsRLamD' S4aps25t- S4aps25t-2 Meta Data 1NS/RT / UPDAT/ / D/2/T/ 写入 CR/AT/ TA,2/ D;ABl= ( id 1NT N5T NU22, d;E; 1NT N5T NU22, ( 1 (1,2 1 (1,2 D (1,2 1 (1,3 1 (1,2 D (1,2 1 (1,3 1 (3,5 1 (1,2
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 A simple system model stream sources N1 NK N2 … input queue output queue primary nodes secondary nodes other apps I1 I2 O1 O2 N’1 N’K N’2 … I’1 I’2 O’1 O’2 6 Vasiliki Kalavri | Boston Boston University 2020 Assumptions Ni primary secondary I1 I2 O1 O2 N’i I’1 I’2 O’1 O’2 • The communication network ensures order-preserving, reliable message transport, e.g. TCP. • Failures much input do we need to re-play? How expensive is it to re-construct the state? How fast can we de-duplicate output? Vasiliki Kalavri | Boston University 2020 Gap Recovery • Restart the operator
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stefani, Lorenzo De, et al. Triest: Counting local and global triangles in fully dynamic streams with fixed memory size. TKDD 2017. https://www.kdd.org/ kdd2016/papers/files/rfp0465-de-stefaniA.pdf Further
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    unsubscribe advertise(): information reg. future events Publish/Subscribe Systems 17 Pub/Sub levels of de-coupling • Space: interacting parties do not need to know each other • Publishers do not know who
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 RocksDBStateBackend • Stores all state into embedded RocksDB instances • Accesses require de/serialization • Checkpoints state to a remote file system and supports incremental checkpoints •
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    in a sep- arate Flink cluster. Flink is responsible for talking with Kubernetes and allocating and de-allocating TaskManagers depending on the required resources. ./bin/flink run-application \ --target
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    in a sep- arate Flink cluster. Flink is responsible for talking with Kubernetes and allocating and de-allocating TaskManagers depending on the required resources. ./bin/flink run-application \ --target
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    What summary would let us compute the statistical variance of this series? 3 var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data values • the sum of the squares of the values • the number of observations var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data of observations • μ = sum / count • var = (sum of squares / count) - μ2 Then var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 Let h be a hash function that maps each stream element into M = log2N bits, where N is the domain of input elements: For each element x, let rank(x) be the number of 0s in 2020 5 Let n be the number of distinct elements in the input stream so far and let R be the maximum value of rank(.) seen so far. ??? Vasiliki Kalavri | Boston University 2020 5 Let n be the number stream so far and let R be the maximum value of rank(.) seen so far. ̂n = 2R Claim: The maximum observed rank is a good estimate of log2n. In other words, the estimated number of distinct elements is equal
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
ExactlyoncefaulttoleranceinApacheFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020如何实时分析Iceberg数据CDCHighavailabilityrecoverysemanticsguaranteesGraphstreamingalgorithmsingestionpubsubsystemsStatemanagementPy1.15Documentation1.16FilteringsamplingstreamsCardinalityfrequencyestimation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩