积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Apache Flink(11)

语言

全部英语(10)中文(简体)(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 DStream (1/2) ▶ DStream: sequence of RDDs
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]: from pyflink.table.udf import udf # sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based Operations [23]: from pyflink.common.types import Row @udf(result_type=DataTypes.ROW([DataTypes.FIELD("id" QueryOperationConverter$SingleRelVisitor. ˓→visit(QueryOperationConverter.java:154) at org.apache.flink.table.operations.CatalogQueryOperation. ˓→accept(CatalogQueryOperation.java:68) at org.apache.flink.table.planner
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]: from pyflink.table.udf import udf # sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based Operations [23]: from pyflink.common.types import Row @udf(result_type=DataTypes.ROW([DataTypes.FIELD("id" QueryOperationConverter$SingleRelVisitor. ˓→visit(QueryOperationConverter.java:154) at org.apache.flink.table.operations.CatalogQueryOperation. ˓→accept(CatalogQueryOperation.java:68) at org.apache.flink.table.planner
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Use equivalence transformation rules if the language allows • selection operations are commutative • theta-join operations are commutative • natural joins are associative • Move projections early differ on a combined stream vs. on separate streams Redundancy elimination Eliminate redundant operations, aka subgraph sharing B A B C D A B C D ??? Vasiliki Kalavri | Boston University 2020 elimination • remove a no-op, e.g. a projection that keeps all attributes • remove idempotent operations, e.g. two selections on the same predicate • remove a dead subgraph, i.e. one that never produces
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    checkpoint, restore, merge, split, query, subscribe, … State operations and types 4 Consider you are designing a state interface. What operations should state support? What state types can you think of Flink program. • The keys are ordered according to a user-specified comparator function. Basic operations • Get(key): fetch a single key-value from the DB • Put(key, val): insert a single key-value
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2/11: Windows and Triggers Vasiliki Kalavri | Boston University 2020 • Practical way to perform operations on unbounded input • e.g. joins, holistic aggregates • Compute on most recent events only clear() } } onTimer() example 31 Vasiliki Kalavri | Boston University 2020 For low-level operations on two inputs: • One transformation method for each input processElement1() and processElement2()
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    对于使用事件时间语义的应用程序来说,watermarks随着时间的推移而变化是非常重要的。watermarks的时间 t表名框架再也不应该期望接收到时间戳比t早的事件了,相反,那些时间戳小于t的operations将会被触发的触发。 例如,当watermarks超过30时,结束于t = 30的事件时间窗口将被关闭并计算。 因此,您应该在应用程序中对事件时间敏感的operators(如流程函数和窗口) providing more TaskManagers. In general, a system already running under very high load during normal operations, will need much more time to catch-up after recovering from a downtime. During this time you will
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 • Transforming languages define transformations specifying operations that process input streams and produce output streams. • Declarative languages specify the computed by a UDA that uses three local tables, IN, TAPE, and OUT, and performs the following operations for each new arriving tuple: 1. Append the encoded new tuple to IN, 2. Copy IN to TAPE, and
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    will cause. • Each row contains a plan with • expected cycle savings • locations for drop operations • drop amounts • QoS effects (provided that tuples can be associated with a utility metric)
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    programmer needs to design and maintain appropriate state synopses. • In order to parallelize operations, events must have associated keys. 38 Distributed dataflow model Vasiliki Kalavri | Boston
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkPy1.15Documentation1.16optimizationsCS591K1DataAnalyticsSpring2020StatemanagementWindowstriggers监控Apache应用程序应用程序入门languagesoperatorsemanticsFlowcontrolloadsheddingprocessingfundamentals
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩