积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(18)中文(简体)(1)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    | Boston University 2020 When the JobManager fails all tasks are automatically cancelled. The new JobManager performs the following steps: 1. It requests the storage locations from ZooKeeper to scaling actions, predict their effects, and decide which and when to apply • Allocate new resources, spawn new processes or release unused resources, safely terminate processes • Adjust dataflow scaling actions, predict their effects, and decide which and when to apply • Allocate new resources, spawn new processes or release unused resources, safely terminate processes • Adjust dataflow
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • know when to use stream processing vs other technology • be able to comprehensively compare features and processing guarantees of streaming systems • be proficient in using Apache Flink and Kafka transfers of €1000 to a "fake account" until either you're out of money or the activity is detected. • Features to detect fraudulent activity like this: • The transaction amount. • The number of recent (e
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    at which streaming data will be divided into batches. val conf = new SparkConf().setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) ▶ It can also be created from an an existing SparkContext object. val sc = ... // existing SparkContext val ssc = new StreamingContext(sc, Seconds(1)) 10 / 79 StreamingContext ▶ StreamingContext is the main entry point of all Spark at which streaming data will be divided into batches. val conf = new SparkConf().setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) ▶ It can also be created from an
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    are either ◦public, or ◦have a default getter and setter Tuple2 person = new Tuple2<>("Fred", 35); // zero based index! String name = person.f0; Integer age = person.f1; {}; public Person(String name, Integer age) { … }; } Person person = new Person("Fred Flintstone", 35); Setup • https://training.ververica.com/devEnvSetup.html • Datasets:
 DataStream rides = env.addSource(new TaxiRideSource(...)); DataStream enrichedNYCRides = rides .filter(new RideCleansing.NYCFilter()) .map(new Enrichment()); enrichedNYCRides
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    val env = StreamExecutionEnvironment.getExecutionEnvironment
 val sensorData = env.addSource(new SensorSource) 
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5 .process(new TemperatureAverager) val avgTemp = sensorData .keyBy(_.id) // shortcut for window.(TumblingEventTimeWindows.of(size)) .timeWindow(Time.seconds(1)) .process(new TemperatureAverager) every 15 minutes .window(SlidingEventTimeWindows.of(Time.hours(1), Time.minutes(15))) .process(new TemperatureAverager) val slidingAvgTemp = sensorData .keyBy(_.id) // shortcut for window.
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    a bitcoin transaction, a packet routed from a source to destination Vertex events: A new product, a new movie, a user ??? Vasiliki Kalavri | Boston University 2020 6 ??? Vasiliki Kalavri | Boston stream: events indicate edge additions or deletions A t+1, the graph is obtained by inserting a new edge or deleting an existing edge (u, v) to E(t+1). If any of u, v do not already exist in V(t) step: For each vertex • choose the min of neighbors’ component IDs and own component ID as the new ID • if the component ID changed since the last iteration, notify neighbors 16 ??? Vasiliki Kalavri
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    traditional SQL aggregates • A Non-blocking query operator can produce answers incrementally as new input records arrive. • projection, selection, union 14 Vasiliki Kalavri | Boston University 2020 bound and the upper bound advances for every new event • all events since 1/1/2019 • Sliding windows have fixed size but both their bounds advance for new events • last 10 events or event in the last Streaming operators take sequences (streams) as input and return sequences (streams) as output: For each new input tuple in S, G adds zero, one, or several tuples to the output. Let Gj(S) be the cumulative
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    val env = StreamExecutionEnvironment.getExecutionEnvironment
 val sensorData = env.addSource(new SensorSource)
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9 val env = StreamExecutionEnvironment.getExecutionEnvironment
 val sensorData = env.addSource(new SensorSource)
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9 val env = StreamExecutionEnvironment.getExecutionEnvironment
 val sensorData = env.addSource(new SensorSource)
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    checkpointPath: String = ??? // configure path for checkpoints on the remote filesystem val backend = new RocksDBStateBackend(checkpointPath) // configure the state backend env.setStateBackend(backend) Configuring alerts: DataStream[(String, Double, Double)] = keyedData .flatMap(new TemperatureAlertFunction(1.7)) Using state in Flink 15 KeyedStream State access inside the flatMap def open(parameters: Configuration): Unit = { // create state descriptor val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp", classOf[Double]) // obtain the state handle lastTempState
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 6 1977 1980 1983 1999 2002 2005 2015 Episode IV: A New Hope Episode V: The Empire Strikes Back Episode VI: Return of the Jedi Episode I: The timestamp override def getCurrentWatermark: Watermark = { // generated watermark with 1 min tolerance new Watermark(maxTs - bound) } override def extractTimestamp(r: Reading, prevTS: Long): Long = { // update extractedTS: Long): Watermark = { if (r.id == "sensor_1") { // emit watermark if reading is from sensor_1 new Watermark(extractedTS - bound) } else { // do not emit a watermark null } } override def extractTimestamp(r:
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020CourseintroductionScalableSparkStreamingFlinkinApacheWindowstriggersGraphstreamingalgorithmslanguagesoperatorsemanticsIntroductiontoKafkaStatemanagementNotionsoftimeprogress
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩