积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Apache Flink(9)

语言

全部英语(8)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    • The performance of these operation is proportional to the size of the state. ▶ mapWithState • It is executed only on set of keys that are available in the last micro batch. • The performance is proportional • The performance of these operation is proportional to the size of the state. ▶ mapWithState • It is executed only on set of keys that are available in the last micro batch. • The performance is proportional • The performance of these operation is proportional to the size of the state. ▶ mapWithState • It is executed only on set of keys that are available in the last micro batch. • The performance is proportional
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    re-partitioning and migration • minimize communication • keep duration short • minimize performance disruption, e.g. latency spikes • avoid introducing load imbalance • Resource management Kalavri | Boston University 2020 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict When and how much to adapt? 12 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    metrics.latency.granularity: subtask), enabling latency tracking can significantly impact the performance of the cluster. It is recommended to only enable it to locate sources of latency during debugging 1550652804788.1550652804788.1&__hssc=216506377.3.1551426921706&__hsfp=3017175250 hand, if you job’s performance is starting to degrade among the first metrics you want to look at are memory consumption and your TaskManagers are constantly under very high load, you might be able to improve the overall performance by decreasing the number of task slots per TaskManager (in case of a Standalone setup), by providing
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    to apply the re-configuration? 3 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions, predict requirements 7 ▸ Accuracy ▸ no over/under-provisioning ▸ Stability ▸ no oscillations ▸ Performance ▸ fast convergence scaling controller detect symptoms decide whether to scale decide MIMO too complex • Action • predictive, dataflow-wide The output signal is the delay time Performance depends on parameter selection, e.g. poles placement, sampling period, damping Cannot identify
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Performance implications 49 How may checkpointing affect application performance? ??? Vasiliki Kalavri | Boston University 2020 Performance implications 49 How may checkpointing affect application performance? How often to checkpoint? ??? Vasiliki Kalavri | Boston University 2020 Performance implications 49 How may checkpointing affect application performance? How often to checkpoint checkpoint? ??? Vasiliki Kalavri | Boston University 2020 Performance implications 49 How may checkpointing affect application performance? How often to checkpoint? Do we need to checkpoint the complete
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Fault-tolerance trade-offs 12 Steady-state overhead • How is performance affected by the fault-tolerance mechanism under normal, failure- free operation? • How much been checkpointed, i.e. the user’s non- deterministic code is not re-executed Bloom filters for performance • Maintaining a catalog of all IDs ever seen and checking it for de-duplication is expensive
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    placement decisions • different algorithms, e.g. hash-based vs. broadcast join • What does performance depend on? • input data, intermediate data • operator properties • How can we estimate the Boston University 2020 13 • Profitability: under what conditions does the optimization improve performance? • can the decision be automatic? • Safety: under what conditions does the optimization preserve
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    have a solid understanding of how stream processing systems work and what factors affect their performance • be aware of the challenges and trade-offs one needs to consider when designing and deploying
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Elasticity Selectively drop records: • Temporarily trades-off result accuracy for sustainable performance. • Suitable for applications with strict latency constraints that can tolerate approximate
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkFaulttolerancedemoreconfigurationCS591K1DataAnalyticsSpring2020监控Apache应用程序应用程序入门ElasticitystatemigrationPartExactlyoncefaultinHighavailabilityrecoverysemanticsguaranteesoptimizationsCourseintroductionFlowcontrolloadshedding
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩