积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)Apache Flink(23)

语言

全部英语(21)中文(简体)(2)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/06: Notions of time and progress Vasiliki Kalavri | Boston University 2020 Mobile game application • input stream: Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while the train Event time • the time when an event actually happened • an event-time window would give you the extra life • results are deterministic and independent of the processing speed Notions of time 5 Vasiliki
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series? 3 var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | Boston synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series? 3 • the sum of all the values • the sum of the squares synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series? 3 • the sum of all the values • the sum of the squares
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    set that is produced incrementally over time, rather than being available in full before its processing begins. • Data streams are high-volume, real-time data that might be unbounded • we cannot University 2020 Time-Series Model: The jth update is (j, A[j]) and updates arrive in increasing order of j, i.e. we observe the entries of A by increasing index. This can model time-series data streams: • a sequence of measurements from a temperature sensor • the volume of NASDAQ stock trades over time This model poses a severe limitation on the stream: updates cannot change past entries in A. 11
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic batch jobs. • Chops up the Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic batch jobs. • Chops up the live stream into batches of X seconds.
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    input streams • perform tuple-at-a-time, window, logic, pattern matching transformations • output one or more streams of possibly different type A series of transformations on streams in Stream 1 • a filter operator typically has selectivity < 1 Is selectivity always known at development time? ??? Vasiliki Kalavri | Boston University 2020 Types of Parallelism 7 B A C A B D A A B Vasiliki Kalavri | Boston University 2020 37 • A TaskManager can execute several tasks at the same time. • It is statically configured with a certain number of processing slots that defines the maximum
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    API for Apache Flink that allows you to build scalable batch and streaming workloads, such as real-time data processing pipelines, large-scale exploratory data analysis, Machine Learning (ML) pipelines you have installed an old version of PyFlink before and multiple PyFlink versions exist at the same time for some reason. # List the jar packages under the lib directory ls -lh /path/to/python/site-packages/pyflink/lib Python UDF @udf(result_type=DataTypes.BIGINT(), func_type='pandas') def pandas_plus_one(series): return series + 1 table.select(pandas_plus_one(col('id'))).to_pandas() /Users/duanchen/sourcecode/fl
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    API for Apache Flink that allows you to build scalable batch and streaming workloads, such as real-time data processing pipelines, large-scale exploratory data analysis, Machine Learning (ML) pipelines you have installed an old version of PyFlink before and multiple PyFlink versions exist at the same time for some reason. # List the jar packages under the lib directory ls -lh /path/to/python/site-packages/pyflink/lib Python UDF @udf(result_type=DataTypes.BIGINT(), func_type='pandas') def pandas_plus_one(series): return series + 1 table.select(pandas_plus_one(col('id'))).to_pandas() /Users/duanchen/sourcecode/fl
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • e.g. joins, holistic aggregates • Compute on most recent events only • when providing real-time traffic information, you probably don't care about an accident that happened 2 hours ago • Recent 
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0)))
 .keyBy(_.id) .timeWindow(Time.minutes(1)) .max("temp")
 } } 3 Example: Window sensor can use the time characteristic to tell Flink how to define time when you are creating windows. The time characteristic is a property of the StreamExecutionEnvironment: Configuring a time characteristic
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Conditions might change • State is accumulated over time 2 events/s time rate decrease events/s time throughput degradation events/s time rate increase : input rate : throughput ??? Vasiliki Kalavri | Boston University 2020 Scaling approaches Metrics • service time and waiting time per tuple and per task • total time spent processing a tuple and all its derived results • CPU utilization one operator at a time • Predictive: at-once for all operators 8 ??? Vasiliki Kalavri | Boston University 2020 Queuing theory models 9 • Metrics • service time and waiting time per tuple and per
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Flink programs • Implement streaming data processing pipelines • Flink managed state • Event time Streaming in Apache Flink • Streams are natural • Events of any type like sensors, click streams processing as a subset of stream processing Processing Data Dataflows Let's Talk About Time • Processing Time • Event Time • Events may arrive out of order! What Can Be Streamed? • Anything (if you write events, FALSE for ride end events startTime DateTime the start time of a ride endTime DateTime the end time of a ride, ""1970-01-01 00:00" for start events startLon Float
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
NotionsoftimeandprogressCS591K1DataStreamProcessingAnalyticsSpring2020FilteringsamplingstreamsprocessingfundamentalsScalableSparkStreamingFlinkoptimizationsPy1.15Documentation1.16WindowstriggersElasticitystatemigrationPartinApache
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩