百度智能云 Apache Doris 文档
位操作函数 字符串函数 条件函数 数学函数 JSON解析函数 类型转换函数 格式转换函数 通用函数 时间和日期函数 BITMAP函数 HLL函数 窗口函数 哈希函数 Baidu 百度智能云文档 目录 2 SQL手册 数据类型 TINYINT数据类型 TINYINT数据类型 长度: 长度为1个字节的有符号整型。 范围: [-128, 127] 转换: Doris可以自动 +------------------------+ +------------------------+ 1 row in set (0.00 sec) 1 row in set (0.00 sec) Baidu 百度智能云文档 SQL手册 3 BIGINT数据类型 BIGINT数据类型 长度: 长度为8个字节的有符号整型。 范围: [-9223372036854775808, 9223372036854775807] +------------------------------------------+ 1 row in set (0.05 sec) 1 row in set (0.05 sec) Baidu 百度智能云文档 SQL手册 4 转换: Doris不会自动将DOUBLE类型转换成其他类型。用户可以使用CAST()将其转换成TINYINT, SMALLINT, INT, BIGINT, STRING0 码力 | 203 页 | 1.75 MB | 1 年前3Doris的数据导入机制以及原子性保证
百度资深研发工程师 Doris Committer 01 Doris简介 导入的问题 02 03 Doris中的导入 使用案例 04 Doris简介 01 • 基于MPP(大规模并行处理)架构的分析型数据库 01 Doris简介 • 性能卓越,PB级别数据毫秒/秒级响应 • 适用于高并发、低延时下的多维分析、实时报表等场景 • 由百度自研,2017年开源,2018年贡献给Apache社区后更名为 读写冲突问题 原始数据 查询导入结果 源 操作1 操作2 处理 失败 失败 源 操作1 操作2 重试成功 额外重试 处理两次 02 导入的问题 At-Most-Once & At-Least-Once 语义 At-Most-Once语义 At-Least-Once语义 失败 源 操作1 操作2 重试成功 重试 只处理一次 Exactly-Once语义 成功 LOG 02 数据导入总览 • 多源数据加载:HDFS、Kafka、本地数据 • 联邦数据查询:Spark • 多源数据访问:ES、MySQL • 通用协议输出:JDBC、ANSI SQL • 多种数据格式支持: 文本、PARQUET、ORC 04 使用案例 导入方式 04 使用案例 导入方式 同步/异步 场景 接口 Broker Load 异步 HDFS、BOS对象存储 MySQL Routine Load0 码力 | 33 页 | 21.95 MB | 1 年前3Apache Doris 在美团外卖数仓中的应用实践
计算能力。OLAP的实现有MOLAP、ROLAP、HOLAP三种形式,MOLAP以Cube为表现形式,但计 算与管理成本较高。ROLAP需要强大的关系型DB引擎支撑。长期以来,由于传统关系型DBMS的 数据处理能力有限,所以ROLAP模式受到很大的局限性。随着分布式、并行化技术成熟应用,MP P引擎逐渐表现出强大的高吞吐、低时延计算能力,号称“亿级秒开”的引擎不在少数,ROLAP模式 可以得到更好的延伸。 应用层模型复杂,根据业务需要以及Kylin生产需要,还要做较多模型预处理。这样在不同 的业务场景中,模型的利用率也比较低。 2. Kylin配置过程繁琐,需要配置模型设计,并配合适当的“剪枝”策略,以实现计算成本与查 询效率的平衡。 3. 由于MOLAP不支持明细数据的查询,在“汇总+明细”的应用场景中,明细数据需要同步到 DBMS引擎来响应交互,增加了生产的运维成本。 4. 较多的预处理伴随着较高的生产成本。 ROLAP模式的优势 同时支持高并发点查询和高吞吐的Ad-hoc查询。 同时支持离线批量导入和实时数据导入。 同时支持明细和聚合查询。 兼容MySQL协议和标准SQL。 支持Rollup Table和Rollup Table的智能查询路由。 支持较好的多表Join策略和灵活的表达式查询。 支持Schema在线变更。 支持Range和Hash二级分区。0 码力 | 8 页 | 429.42 KB | 1 年前3SelectDB案例 从 ClickHouse 到 Apache Doris
高效为业务赋能,内容库数据平台旨在集成各数据源的数据,整合形成内容数据资产(以指 标和标签体系为载体),为应用层提供库存盘点、分群画像、指标分析、标签圈选等内容分 析服务。 数据架构演进 TDW 是腾讯最大的离线数据处理平台,公司内大多数业务的产品报表、运营分析、数据挖 掘等的存储和计算都是在 TDW 中进行,内容库数据平台的数据加工链路同样是在腾讯数据 仓库 TDW 上构建的。截止目前,内容库数据平台的数据架构已经从 数仓层:不支持部分列更新,当上游任一来源表产生延迟,均会造成大宽表延迟, 进而导致数据时效性下降。 加速层:不同的标签跟指标特性不同、更新频率也各不相同。由于 ClickHouse 目前 更擅长处理宽表场景,无区别将所有数据导入大宽表生成天的分区将造成存储资源 的浪费,维护成本也将随之升高。 应用层:ClickHouse 采用的是计算和存储节点强耦合的架构,架构复杂,组件依赖 严重, 中, 接着使用 Flink 来消费 Kafka,并通过主键 ID 构建出一张大宽表,最后将大宽表导入到 Doris 中。如下图所示,来自数仓 N 个表中 ID=1 的 5 条数据,经过 Flink 处理以后,只有一条 ID=1 的数据写入 Doris 中,大大减 少 Doris 写入压力。 通过以上导入优化方案,极大地降低了存储成本, TDW 无需维护两份冗余的数据,Kafka 也只需0 码力 | 12 页 | 1.55 MB | 1 年前3
共 4 条
- 1