积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(4)ClickHouse(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 4 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    2 Block … DataNode-2 Block 1 Block 2 Block … DataNode-3 DataNode-1 指标计算平台 Ø 分布式计算 • 并行计算 Ø 列式存储 • 按需加载减少IO • 可支持大量列 Ø 动态位图索引 • 缓存上次结果 • 成本低、命中率高 核心特点 Bitmap Filter Builder Dynamic 数据仓库(TDW) 画像服务 BI服务 查询服务 ETL工具 一切以用户价值为依归 25 业务应用实践 iData 2 • 支持更多的机器学习算法 • 支持explain 查看整个sql 执行计划 • 集群管理 一切以用户价值为依归 Future Thanks 腾讯招聘 腾讯大数据
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
  • pdf文档 6. ClickHouse在众安的实践

    03GB/s 2.46GiB 26 ClickHouse 百亿数据性能测试与优化 • 场景5涉及到全表百亿行数据,第一次执行与后续执行花费时间差距较大 • 第一次执行,数据在硬盘上 花费~250s,性能瓶颈在硬盘io (iostat util 100%) • 第二次执行,大部分数据已经在内存里 花费~18s,性能瓶颈在cpu (top cpu usage ~1447%) • 两次运行的比较: 百亿数据性能测试与优化 • 性能瓶颈在硬盘io,实验验证 • 数据分布在三台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~24.28million rows/s • 只用到三块硬盘的io:3*140=420mb/s • 数据分布在六台服务器上 • 执行涉及到全表数据的查询(cold data,从硬盘读取),处理速度为~43.60million iotop:查看系统进程占用io情况 • iostat -dmx 1: 查看磁盘io使用情况,每秒更新 • Clickhouse命令: • set send_logs_level = 'trace':查看sql执行步骤详情 • 根据query_id查看内存使用情况,io情况等详细信息: system flush logs; select ProfileEvents.Names as name, match(name
    0 码力 | 28 页 | 4.00 MB | 1 年前
    3
  • pdf文档 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎

    query_log表,记录已经 执行的查询记录 query:执行的详细SQL,查询相关记录可以 根据SQL关键字筛选该字段 query_duration_ms:执行时间 memory_usage:占用内存 read_rows和read_bytes :读取行数和大小 result_rows和result_bytes :结果行数和 大小 以上信息可以简单对比SQL执行效果 全球敏捷运维峰会 广州站
    0 码力 | 15 页 | 1.33 MB | 1 年前
    3
  • pdf文档 2. ClickHouse MergeTree原理解析-朱凯

    如果单个批次数据大小恰好在64K与1M之间,则 直接生成下一个压缩数据块。 l 单个批次数据 size > 1M 如果单个批次数据直接超过1M,则首先按照1M 大小截断并生成下一个压缩数据块。剩余数据继续依 照上述规则执行。此时,会出现一个批次数据生成多 个压缩数据块的情况。 每个压缩数据块的体积,按照其压缩前的数据字节大小,都被严格的控制在64K~1M之间,其上下限分 别由min_compress_block_s
    0 码力 | 35 页 | 13.25 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
腾讯clickhouse实践2019丁晓坤熊峰ClickHouse众安蔡岳毅基于StarRocks构建支撑千亿数据数据量可用查询引擎MergeTree原理解析朱凯
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩