积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(9)ClickHouse(9)

语言

全部中文(简体)(8)英语(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 9 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 数仓ClickHouse多维分析应用实践-朱元

    主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 03 1. Memory limit (for query) exceeded 解决:通过在users
    0 码力 | 14 页 | 3.03 MB | 1 年前
    3
  • pdf文档 ClickHouse在B站海量数据场景的落地实践

    v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): Ø ⽇志&Trace分析 Ø ⽤户⾏为分析(包括事件分析,漏⽃分析,路径分析等) Ø 圈⼈定投 Ø ⼴告DMP(包括统计分析,⼈群预估) ⼴告DMP(包括统计分析,⼈群预估) Ø 电商交易分析 Ø OGV内容分析 Ø APM (Application Performance Management) 基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 (Rider/Spark/WaterDrop) 实时接入 (BSQL/Saber/Flink & ClickHouse JDBC) Applications 用户程序 Flink/JDBC/Go/HTTP 标签圈人 。。。 广告DMP 内容定投 内容分析 日志&Trace 平台
    0 码力 | 26 页 | 2.15 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景 l iData 数据分析引擎TGMars l 为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog TDW 数据仓库 采 集 存 储 大数据应用 PaaS平台 数据挖掘与内容推荐 PaaS 精准 推荐 知识 图谱 精细化 运营 … iData 大数据分析PaaS 实时 分析 多维 分析 画像 分析 … DataMore 大数据应用PaaS 实时 决策 任务 系统 … 排 行 榜 大数据应用 SaaS系统 iData 用户画像 DataMore 月光宝盒 精细化、精准化驱动场景服务 n 提升原有服务的增强效果 n iData大数据分析PaaS 在线实时能力 n iData大数据分析:多维分析,画像分析能力 n DataMore大数据实时决策能力 一切以用户价值为依归 17 业务应用实践 iData 2 新大数据分析引擎2.0 业界传统 大数据分析 引擎 大数据分析引擎&存储 Analytical Engine & Database 大数据仓库
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
  • pdf文档 6. ClickHouse在众安的实践

    Clickhouse在众安的应用实践 百亿保险数据实时分析探索 众安保险 数据智能中心 蒙强 2019年10月27日 众安保险 • 成立于2013年,是中国第一家互联网保险公司。 • 互联网保险特点: 1. 场景化 2. 高频化 3. 碎片化 • 今年上半年众安上半年服务用户3.5亿,销售保单33.3亿张。 CHAPTER 报表系统的现状 01 数据分析的最直观表现形式:报表 报表≠数据驱动 传统报表访问往往是静态的、高聚合、低频、表单式的 集智平台可视化交互分析 数据加工的链路与数据价值发现 竞争优势 分析成熟度 洞察与应对 预测与行动 源数据 数据清洗 标准报表 OLAP系统 商务智能(BI) 机器学习建模 人工智能优化 发生了什么? 为什么发生? 什么会发生? 什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 洞察数据模型+Clickhouse 使用效果 CHAPTER 使用ck对百亿数据的探索 03 背景 我们希望对保单、用户数据进行灵活分析,根据用户标签筛选出符合 要求的客户进行精准营销。 原始保单数据百亿+,用户数据数亿,如果用户标签几百个,数据存 储和查询以及分析的压力就会很大,原有系统使用es来保存用户标签 数据。 保单表 用户表 用户行为表 ODPS ES 用户标签表 痛点 • 数据查询慢:每个查询需要5~10分钟;
    0 码力 | 28 页 | 4.00 MB | 1 年前
    3
  • pdf文档 4. ClickHouse在苏宁用户画像场景的实践

    精确去重计数性能测试 6 ClickHouse在苏宁使用场景  OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。  运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。  用户画像场景 -- 标签数据的存储、用户画像查询引擎。 7 Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap 详见:http://roaringbitmap.org/ 通过单个bitmap可以完成精确去重操作,通过多个bitmap的and、or、xor、andnot等位 操作完成留存分析、漏斗分析、用户画像分析等场景的计算。 00101110 00100001 00100000 …… Byte[0] Byte[1] Byte[2] Byte[n] 9 Index = 查询SQL 24 用户画像场景2—人群圈选画像 输入条件 返回结果 场景描述 场景:对选出符合发优惠券条件的用户迚行画像分析,人群特征分析。 操作:用户指定标签及标签间的逡辑关系,查询出符合标签逡辑的用户ID数据集,然后对数 据集迚行用户画像分析。一条SQL完成人群圈选、用户画像两个劢作。 标签逡辑表达式,包含标签、算术运算符、逡辑运算符、括号。 查询出符合标签表达式的用户ID
    0 码力 | 32 页 | 1.47 MB | 1 年前
    3
  • pdf文档 2. Clickhouse玩转每天千亿数据-趣头条

    eventType='' 建表的时候缺乏深度思考,由于分时指标的特性,我们的表是order by (timestamp, eventType)进行索引 的,这样在计算累时指标的时候出现非常耗时(600亿+数据量) 分析: 对于累时数据,时间索引基本就失效了,由于timestamp”基数”比较高,对于排在第二位eventType索引, 这个时候对数据的过滤就非常有限了,这个时候几乎就要对当天的数据进行全部扫描 解决: 1:调整索引的顺序,推荐索引列的基数不要太高. 我们遇到的问题 Too many parts(304). Merges are processing significantly slower than inserts. 分析: 1:直接落盘,异步merge - background_pool_size 2:一个Insert Request,涉及N个分区的数据,在磁盘上就会生成N个数据目录,merge跟不上 3:一 解决: 1:增大background_pool_size治标不治本 2:设置分区的时候需要思考,数据的特性需要了解 我们遇到的问题 查询过程中clickhouse-server进程挂掉 分析: clickhouse裸奔时max_memory_usage_for_all_queries默认值为0,即不限制clickhouse内存使用 解决: clickhouse安装完成以后,在users
    0 码力 | 14 页 | 1.10 MB | 1 年前
    3
  • pdf文档 2. ClickHouse MergeTree原理解析-朱凯

    三峡电能 秦山核电 香港医思医疗 国家能源集团 安徽皖能 南方电网 金川集团 金晶集团 中航集团 比亚迪股份 互联数据资源、为组织数字资产管理运营、数据探索、分析赋能! 数据汇聚 专业的数据资源管理 自助分析 价值挖掘 多维探索 灵活 快速 自助 洞察 预警 消息 交互 Agenda. 数据分区 01 / 一级索引&二级索引 02 / 数据存储 03 / 数据标记
    0 码力 | 35 页 | 13.25 MB | 1 年前
    3
  • pdf文档 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎

    监控好服务器的cpu/内存波动/`system`.query_log; • 数据存储磁盘尽量采用ssd; • 减少数据中文本信息的冗余存储; • 特别适用于数据量大,查询频次可控的场景,如数据分析,埋点日志系统; 全球敏捷运维峰会 广州站 StarRocks应用小结 • 发挥分布式的优势,要提前做好分区字段规划; • 支持各种join,语法会相对clickhouse简单很多; •
    0 码力 | 15 页 | 1.33 MB | 1 年前
    3
  • pdf文档 8. Continue to use ClickHouse as TSDB

    sum(time_series) to sum(time_series.sum) What we do QingCloud ChronusDB 青云 QingCloud 自研的一 款高性能、具备强大 分析 能力的时序数据库产品 高性能并发读写 • 千万数据点并发实时写入 • 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法
    0 码力 | 42 页 | 911.10 KB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
数仓ClickHouse多维分析多维分析应用实践朱元海量数据场景落地腾讯clickhouse2019丁晓坤熊峰众安苏宁用户画像Clickhouse玩转每天千亿头条MergeTree原理解析朱凯蔡岳毅基于StarRocks构建支撑数据量可用查询引擎ContinuetouseasTSDB
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩