ClickHouse在B站海量数据场景的落地实践
Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 ( Service v Berserker数据源管理: Ø 建表 Ø 修改表元数据 Ø 表元数据管理 v Yuuni: Ø 屏蔽集群信息 Ø 原⽣JDBC,HTTP接⼜ Ø 读写分离 Ø 动态查询缓存 Ø 流量控制 v 监控管理平台: Ø 统计⼤盘 Ø 回归测试 Ø 接⼊评估 Ø 数据迁移 Ø 数据重平衡 v 交互式分析查询:Superset提供即时查询能⼒ v 离线写⼊服务 (Rider) ClickHouse中采⽤分表,统⼀schema的设计 v ⽇志查询采⽤类似ES语法,降低⽤户迁移成本 用户行为数据分析 概述 v 基于ClickHouse构建B站⽤户⾏为数据分析产品:北极星 v 行为数据分析平台主要以下功能模块: 事件分析 v 海量埋点事件数据,⽇增数据千亿级。 v ⽤户⾏为事件的多维度分析场景。 v 事件包含公共属性和私有属性,均可作过滤和聚合维度。 v 不同事件有不同的私有属性字段。 v 动态选择的过滤维度和聚合维度。0 码力 | 26 页 | 2.15 MB | 1 年前3蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎
ALTER TABLE A REPLACE PARTITION 分区名 FROM A_temp 全球敏捷运维峰会 广州站 针对ClickHouse的保护机制 1. 被动缓存; 2. 主动缓存; 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø0 码力 | 15 页 | 1.33 MB | 1 年前33. 数仓ClickHouse多维分析应用实践-朱元
max_bytes_before_external_sort max_bytes_before_external_group_by 2. 用户并发量一上来,负载太高 解决:目前是在中间加redis缓存0 码力 | 14 页 | 3.03 MB | 1 年前32. 腾讯 clickhouse实践 _2019丁晓坤&熊峰
Block … DataNode-3 DataNode-1 指标计算平台 Ø 分布式计算 • 并行计算 Ø 列式存储 • 按需加载减少IO • 可支持大量列 Ø 动态位图索引 • 缓存上次结果 • 成本低、命中率高 核心特点 Bitmap Filter Builder Dynamic Bitmap Index Cache Bitmap Index Generator0 码力 | 26 页 | 3.58 MB | 1 年前34. ClickHouse在苏宁用户画像场景的实践
tag-generate负责标签数据构建,保存到HDFS(MySQL中存储标签配置信息) tag-loader向ClickHouse发送从HDFS导入标签数据的sql to-ch-sql模块,将用户画像查询条件转换为ClickHouse sql诧句 用户画像平台通过Proxy从ClickHouse集群查询标签数据 Spark tag-generate tag-loader0 码力 | 32 页 | 1.47 MB | 1 年前3
共 5 条
- 1