蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎
跨机房部署,实现最低成本的DR 缺点: 1. 不支持大规模的批处理; 2. 支持insert into,但最理想的是消费Kafka; 全球敏捷运维峰会 广州站 ClickHouse/StarRocks在酒店数据智能平台的架构 全球敏捷运维峰会 广州站 ClickHouse的全量数据同步流程 1. 清空A_temp表,将最新的数据从Hive通过ETL导入 到A_temp表; 2. 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 system.query_log表,记录已经 read_rows和read_bytes :读取行数和大小 result_rows和result_bytes :结果行数和 大小 以上信息可以简单对比SQL执行效果 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 全球敏捷运维峰会 广州站 ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化;0 码力 | 15 页 | 1.33 MB | 1 年前36. ClickHouse在众安的实践
成立于2013年,是中国第一家互联网保险公司。 • 互联网保险特点: 1. 场景化 2. 高频化 3. 碎片化 • 今年上半年众安上半年服务用户3.5亿,销售保单33.3亿张。 CHAPTER 报表系统的现状 01 数据分析的最直观表现形式:报表 报表≠数据驱动 每天被访问超过10次的报表寥寥无几 传统报表访问往往是静态的、高聚合、低频、表单式的 集智平台可视化交互分析 数据加工的链路与数据价值发现 竞争优势 机器学习建模 人工智能优化 发生了什么? 为什么发生? 什么会发生? 什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Hadoop, JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Clickhouse, Kylin 数据接入 消 息 中 间 件 模型、 算法 模版 机器学习平台 Antron 机器人平台 X-Insight 数据洞察平台 X-Zatlas 数据可视化平台 模板 X-BI 数据探索平台 图像分类 平台 OCR工具 链 X-Farm 异构数据治理、协同平台 元数据管理/数据集市 数据权限管理 | 大数据、流数据建模 | 数据/模型生命周期管理0 码力 | 28 页 | 4.00 MB | 1 年前32. 腾讯 clickhouse实践 _2019丁晓坤&熊峰
l 为什么选用ClickHouse l 平台在ClickHouse上的使用 16 业务应用实践 iData 2 腾讯游戏 数据化驱动服务 场景视图: TGlog 服务端采集 腾讯游戏 服务器 腾讯游戏 移动客户端 微信 小游戏 WEB 游戏 海外 游戏 TDM-SDK 客户端采集 特性 采集 大数据基础 PaaS平台 游戏 营销活动 Dbbinlog 数据库采集 数据库采集 Game DB 数 据 管 理 + 元 数 据 TDBANK 准实时传输管道 Kafka-Pipeline 实时管道 TDW 数据仓库 采 集 存 储 大数据应用 PaaS平台 数据挖掘与内容推荐 PaaS 精准 推荐 知识 图谱 精细化 运营 … iData 大数据分析PaaS 实时 分析 多维 分析 画像 分析 … DataMore 大数据应用PaaS DataMore 任务系统 iData 数据可视化 游 谱 游戏说 神秘 商店 iData 多维提取 … 游戏数据 驱动场景 潘多拉 社交与功能 用户增长 服务场景 游戏 社区 微信手Q 渠道投放 直播 电竞 … 大数据基础PaaS平台 n 标准化、海量数据接入能力 n 实时化、低延时对接数据应用 n 异构化兼容能力 大数据应用PaaS服务 游戏数据驱动场景0 码力 | 26 页 | 3.58 MB | 1 年前3ClickHouse在B站海量数据场景的落地实践
ClickHouse在B站海量数据场景的落地实践 胡甫旺 哔哩哔哩OLAP平台 目录 vClickHouse在B站 v内核 v日志 v用户行为数据分析 vFuture Work vQ&A ClickHouse在B站 B站ClickHouse应用概况 v 近400个节点,30个集群 v ⽇均1.5+万亿条数据摄⼊ v ⽇均800+万次Select请求 v 应⽤场景包括(不限于): ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 (Rider/Spark/WaterDrop) 实时接入 (BSQL/Saber/Flink & 广告DMP 内容定投 内容分析 日志&Trace 平台 APM ClickHouse as Service v Berserker数据源管理: Ø 建表 Ø 修改表元数据 Ø 表元数据管理 v Yuuni: Ø 屏蔽集群信息 Ø 原⽣JDBC,HTTP接⼜ Ø 读写分离 Ø 动态查询缓存 Ø 流量控制 v 监控管理平台: Ø 统计⼤盘 Ø 回归测试 Ø 接⼊评估 Ø0 码力 | 26 页 | 2.15 MB | 1 年前32. ClickHouse MergeTree原理解析-朱凯
ClickHouse MergeTree原理解析 朱凯@深圳 2019.10 朱 凯 远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 企业云服务 l 智能机器人应用 l 集团IT治理 l …… l 能源产业链 l 区域能源管理 l 能源大数据 l 购售电平台 l …… l 智慧组织 l 智慧城市 l 智慧产业 l …… EDT 企业级大数据平台 BAS区块链企业应用服务平台 ECP 企 业 云 平 台 服务(咨询、实施、运维、定制开发、系统集成……) 面向 集团企业 面向 能源行业 面向 社会治理 型YYYYMMDD格式,则直接按照该整型的字符形式 输出作为分区ID的取值。 l 使用日期类型 如果分区键取值属于日期类型,或者是能够转 换为YYYYMMDD日期格式的整型,则使用按照 YYYYMMDD日期格式化后的字符形式输出作为分区 ID的取值。 l 使用其它类型 如果分区键取值既不属于整型,也不属于日期 类型,例如String、Float等。则通过128位Hash 算法取其Hash值作为分区ID的取值。0 码力 | 35 页 | 13.25 MB | 1 年前33. 数仓ClickHouse多维分析应用实践-朱元
需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至 本地 Etl服务器 • 通过clickhouse- client将文本导 入ck数据库 一般维度表数据量不大. 目前采用的是引擎Log+字典表(dictionary) 数 仓 建 设 – 主题事实清单表 主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址:0 码力 | 14 页 | 3.03 MB | 1 年前34. ClickHouse在苏宁用户画像场景的实践
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 误差率 精确去重计数性能测试 6 ClickHouse在苏宁使用场景 OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。 运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。 用户画像场景 -- HBase Redis 第三方… Spark 用户画像平台 现有的流程: ES中定义标签的大宽表 通过Spark关联各种业务数据,插入到ES大 宽表。 高频查询的画像数据通过后台任务保存到加 速层:Hbase 戒者 Redis 实时标签通过Flink计算,然后写入Redis 用户画像平台可以从ES、Hbase、Redis查 询数据 痛点: to-ch-sql模块,将用户画像查询条件转换为ClickHouse sql诧句 用户画像平台通过Proxy从ClickHouse集群查询标签数据 Spark tag-generate tag-loader MySQL ClickHouse集群 ClickHouse1 ClickHouse Manager HDFS 用户画像平台 ClickHouse2 ClickHouseN to-ch-sql0 码力 | 32 页 | 1.47 MB | 1 年前32. Clickhouse玩转每天千亿数据-趣头条
我们遇到的问题 业务背景 基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算 集群现状 100+台32核128G 部分复杂累时查询30S内完成 集群现状0 码力 | 14 页 | 1.10 MB | 1 年前3
共 8 条
- 1