积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)ClickHouse(15)

语言

全部英语(6)中文(简体)(5)俄语(4)

格式

全部PDF文档 PDF(13)PPT文档 PPT(2)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 英语
  • 中文(简体)
  • 俄语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 5. ClickHouse at Ximalaya for Shanghai Meetup 2019 PDF

    groupArray(timestamp) as timestamps, arrayEnumerate(pages) as index FROM (SELECT * FROM client_log_all ORDER BY timestamp) GROUP BY user ����������������� ���������� SELECT user, groupArray(page) as pages except Order] arrayFilter((i, p) -> (pages[i] = 'HomePage' AND pages[i+1]= 'Detail' AND pages[i+2]!='Order'), index, pages) as level_2, // In pages array, find a subarray of [HomePage, Detail, Order] arrayFilter((i (pages[i] = 'HomePage' AND pages[i+1]= 'Detail' AND pages[i+2]='Order'), index, pages) as level_3 FROM (SELECT * FROM client_log_all ORDER BY timestamp) GROUP BY user • �������������������������������
    0 码力 | 28 页 | 6.87 MB | 1 年前
    3
  • pdf文档 ClickHouse in Production

    SumShows, countIf(CounterType='Click') as SumClicks, BannerID FROM EventLogHDFS GROUP BY BannerID ORDER BY SumClicks desc LIMIT 3; 52 / 97 In ClickHouse: Most Clicked Banner SELECT countIf(CounterType='Show') SumShows, countIf(CounterType='Click') as SumClicks, BannerID FROM EventLogHDFS GROUP BY BannerID ORDER BY SumClicks desc LIMIT 3; ┌─SumShows─┬─SumClicks─┬───BannerID─┐ │ 6485 │ 1015 │ 6251269090 │ │ 97 In ClickHouse: Local Log Copy CREATE TABLE EventLogLocal AS EventLogHDFS ENGINE = MergeTree() ORDER BY BannerID; Ok. INSERT INTO EventLogLocal SELECT * FROM EventLogHDFS; Ok. 0 rows in set. Elapsed:
    0 码力 | 100 页 | 6.86 MB | 1 年前
    3
  • pdf文档 8. Continue to use ClickHouse as TSDB

    `HeartRate` UInt8, `Humidity` Float32, ... ) ENGINE = MergeTree() PARTITION BY toYYYYMM(Time) ORDER BY (Name, Time, Age, ...); ► Column-Orient Model How we do CREATE TABLE demonstration.insert_view `HeartRate` UInt8, `Humidity` Float32, ... ) ENGINE = MergeTree() PARTITION BY toYYYYMM(Time) ORDER BY (Name, Time, Age, ...); ► Column-Orient Model How we do CPU : Intel Skylake 8 core Memory 'cpu-usage_user') AND ((created_at >= '2016-01-01 08:00:00') AND (created_at <= '2016-01-01 09:00:00')) ORDER BY toStartOfMinute(created_at) DESC LIMIT 5 ┌─value─┐ │ 4 │ │ 4 │ │ 4 │ │ 4 │ │
    0 码力 | 42 页 | 911.10 KB | 1 年前
    3
  • pdf文档 1. Machine Learning with ClickHouse

    SAMPLE x OFFSET y CREATE TABLE trips_sample_time ( pickup_datetime DateTime ) ENGINE = MergeTree ORDER BY sipHash64(pickup_datetime) -- Primary Key SAMPLE BY sipHash64(pickup_datetime) -- expression for total_amount, trip_distance, (toYear(pickup_datetime) - 2009) * (trip_distance + 1)) FROM trips WHERE <...> ORDER BY sipHash64(trip_id) ASC [2.138706869701764,0.25152600248358253,4.5418692076782445] That’s better as aggregate function state in a separate table Example CREATE TABLE models ENGINE = MergeTree ORDER BY tuple() AS SELECT stochasticLinearRegressionState(total_amount, trip_distance) AS model FROM
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 0. Machine Learning with ClickHouse

    SAMPLE x OFFSET y CREATE TABLE trips_sample_time ( pickup_datetime DateTime ) ENGINE = MergeTree ORDER BY sipHash64(pickup_datetime) -- Primary Key SAMPLE BY sipHash64(pickup_datetime) -- expression for total_amount, trip_distance, (toYear(pickup_datetime) - 2009) * (trip_distance + 1)) FROM trips WHERE <...> ORDER BY sipHash64(trip_id) ASC [2.138706869701764,0.25152600248358253,4.5418692076782445] That’s better as aggregate function state in a separate table Example CREATE TABLE models ENGINE = MergeTree ORDER BY tuple() AS SELECT stochasticLinearRegressionState(total_amount, trip_distance) AS model FROM
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 4. ClickHouse在苏宁用户画像场景的实践

    groupBitmapState Integer 聚合类 groupBitmapAnd groupBitmapOr groupBitmapXor 14 Bitmap应用示例 order_id order_date user_id product_id 1 2019-10-01 1 p1 2 2019-10-01 1 p2 3 2019-10-01 2 p1 2019-10-02 5 p1 8 2019-10-02 5 p2 一张简单的订单明细表 detail_order,如何计算用户的日留存? 15 标签 SQL 大表join,count distinct 都比较慢,而且容易 OOM! Bitmap应用示例 order_date uv_bitmap 2019-10-01 {1,2,3} 2019-10-02 {3 5] • 新用户: day2 ANDNOT day1 = [4,5] • 流失用户:day1 ANDNOT day2 = [1,2] 16 detail_order 聚合为天维度表 留存用户的SQL Bitmap函数 千万级用户, 秒级出结果! Contents 苏宁如何使用ClickHouse ClickHouse集成Bitmap
    0 码力 | 32 页 | 1.47 MB | 1 年前
    3
  • pdf文档 2. Clickhouse玩转每天千亿数据-趣头条

    1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘 最新版本的”冷热数据分离”特性,曲线救国? 我们遇到的问题 order by (timestamp, eventType) or order by (eventType, timestamp) 业务场景 1:趣头条和米读的上报数据是按照”事件类型”(eventType)进行区分 2:指标系统分”分时”和”累时”指标 table where dt='' and timestamp>='' and timestamp<='' and eventType='' 建表的时候缺乏深度思考,由于分时指标的特性,我们的表是order by (timestamp, eventType)进行索引 的,这样在计算累时指标的时候出现非常耗时(600亿+数据量) 分析: 对于累时数据,时间索引基本就失效了,由于timestamp”基 from table where column=value select column1, column2 from table where column=value 凡是涉及group by, order by, distinct, join这样的SQL内存占用不再是O(1) 解决: 1:max_bytes_before_external_group_by 2:max_bytes_before_external_sort
    0 码力 | 14 页 | 1.10 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    GROUP BY key ORDER BY value DESC LIMIT 10 SELECT play_times_key AS key, sum(play_times_value) AS value FROM wegame ARRAY JOIN play_times_key, play_times_value GROUP BY key ORDER BY value DESC
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
  • pdf文档 2. ClickHouse MergeTree原理解析-朱凯

    expr] [ORDER BY expr] [PRIMARY KEY expr] [SAMPLE BY expr] [SETTINGS name=value, 省略...] 分区键 排序键 主键 index_granularity = 8192 索引粒度 MergeTree的存储结构 数据以分区的形式被组织 , PARTITION BY 各列独立存储, 按ORDER BY 排序
    0 码力 | 35 页 | 13.25 MB | 1 年前
    3
  • ppt文档 Что нужно знать об архитектуре ClickHouse, чтобы его эффективно использовать

    count(*) AS count FROM hits WHERE CounterID = 1234 AND Date >= today() - 7 GROUP BY Referer ORDER BY count DESC LIMIT 10 Типичный запрос в системе веб-аналитики Быстро читаем › Только нужные столбцы:
    0 码力 | 28 页 | 506.94 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
ClickHouseatXimalayaforShanghaiMeetup2019PDFinProductionContinuetouseasTSDBMachineLearningwith苏宁用户画像场景实践Clickhouse玩转每天千亿数据头条腾讯clickhouse丁晓坤熊峰MergeTree原理解析朱凯
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩