Raft在Curve存储中的工程实践
raft可以解决分布式理论中的CP,即一致性和分区容忍性 • 大多数副本成功即可返回成功 • 速度取决于写的较快的大多数RAFT协议简介 • Leader:负责从客户端接受日志,把日志复制到其 他服务器,当保证安全性的时候告诉其他服务器应用 日志条目到他们的状态机中。 • Candidate: 发起选举。获取大多数选票的候选人将 成为领导者。 • Follower: 响应来自其他服务器的请求,如果接受不 到消息,就变成候选人并发起一次选举。 raft任期RAFT协议简介 raft复制状态机 1. leader收到客户端的请求。 2. leader把请求指令记录下来,写入日志,然后并⾏发 给其他的服务器,让他们复制这条⽇志。 3. 当这条⽇志条⽬被安全的复制,leader会应⽤这条⽇ 志条⽬到它的状态机中。 4. 然后把执⾏的结果返回给客户端。 • 提供命令在多个节点之间有序复制和执行,当多个节 点初始状态一致的时候,保证节点之间状态一致。 raft的apply,直接在对应的chunk上写入数据。Curve文件存储RAFT应用 Curve文件存储 • 分布式文件系统 • 支持多挂载,提供close-to-open一致性 • 提供缓存加速,可使用内存、本地盘、云盘加速 • 存储后端可对接对象存储,降低成本 • 支持生命周期管理 Curve文件存储架构 • client:接受用户请求,采用fuse的方式挂载挂载使用。 • 元数据集群:mds0 码力 | 29 页 | 2.20 MB | 5 月前3PFS SPDK: Storage Performance Development Kit
2 Why ●为了减少使用cpu做内存copy,减少系统调用 ●发挥某些被操作系统屏蔽的功能,例如nvme write zero ●根据阿里《When Cloud Storage Meets RDMA》的说法 ●在100Gbps网络带宽时,内存带宽成为瓶颈 ●Intel Memory Latency Checker (MLC)测试得到的CPU内存带宽是 61Gbps10/17/22 3 3 RDMA可以减轻CPU负担 ●可以减少CPU操作网络通讯的开销 ●读写内存都由网卡进行offload ●应用程序不再通过系统调用在内核和用户态来回切换10/17/22 4 磁盘的读写 ●基于EXT4的存储引擎,依然需要通过系统调用来回切换 ●读写都需要CPU拷贝数据 ●不能发挥某些NVME的功能,例如write zero10/17/22 5 为什么用PFS ●对代码比较熟悉 ●直接DMA读写,要求的内存必须是DPDK的hugetlb内存 ●必须符合NVME 内存读写地址对齐要求 ●offset 512对齐 ●为零copy提供接口10/17/22 10 BRPC IOBuf DMA ●修改BRPC,允许使用dpdk内存作为IOBuf的内存分配器 ●BRPC接收到的数据在IOBuf中,IOBuf直接使用于NVME DMA传输 ●使用IOBuf内存读nvme,避免自0 码力 | 23 页 | 4.21 MB | 5 月前3CurveFs 用户权限系统调研
文件默认权限umask 用户&用户组 文件系统用户权限管理 对mode的管理 对ACL(Access Control Lists)的管理 ACL Access Entry保存在哪? ACL的表示 内存中的ACL 是如何与具体的 Inode 相关联 如何存储和获取ACL信息 Inode权限校验 chmod、chown、setfacl、getfacl接口文件系统自己如何实现 结论: 参考文献: root@pubbeta1-nostest2:/tmp# cd fsmount bash: cd: fsmount: Permission denied© XXX Page 4 of 33 查阅资料发现这是fuse的一种安全策略,默认是只有filesystem owner拥有该文件系统的访问权限,如果想要其他用户有权访问,需要在挂载参数中指定‘-o allow-root’ 或'-o allow-other'以允许相应用 访问控制列表(ACL 或 POSIX ACL)是多用户系统的 。 与基本的 POSIX RWX 位相比,POSIX ACL 有助于对文件系统权限进行 的控制。可以针对用户(User)、群组(Group) 附加安全控制功能 更灵活、更细粒度 、默认属性掩码(umask)进行设置。 ACL是Linux系统权限额外支持的一项功能,需要文件系统的支持,例如:ReiserFS , EXT2 , EXT3 , EXT40 码力 | 33 页 | 732.13 KB | 5 月前3Curve文件系统元数据管理
1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:inode和dentry都按照parentid分片 5.1.1 场景分析 查找:查找/A/C。 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page 3 of 24 moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk chunk raft 块设备的元数据管理 cephfs 3、各内存结构体 时间复杂度 空间复杂度 特点 可用实现 Btree 一个节点上保存多条数据,减少树的层次(4~5层),方便从盘上读取数据,减少去盘上读取次数。适合在盘上和内存组织目录树。 google,https://github.com/abseil/abseil-cpp/tree/master/absl/c0 码力 | 24 页 | 204.67 KB | 5 月前3CurveFS Copyset与FS对应关系
5、读写流程 6.6、topology 7、工作评估 7.1 client端 7.2 mds端 7.3 metaserver端 metaserver 子模块拆分 8、inode和dentry的内存估算 8.1 一台机器上能存放多少个inode和dentry 8.2 一台机器上建议的copyset数量 8.3 每个copyset建议管理存储容量的大小 1、背景 curvefs使用raft 63-1的Inode id。创建meta partition的时候,选择的3个meta node组成一个复制组。如何选择?论文上写的是按照存储节点的memory和disk usage来选的,通常选择内存和disk使用率最低的节点。 并去对应的meta node上去创建对应的meta partition。 如何选择partition的host,通过这个函数去选择。 func (c *Cluster) []proto.Peer, err ) string error metanode是否能够创建copyset,由这个函数判断。有这些判断条件: 1、metaNode的存活状态 2、metaNode的内存使用情况 3、metaNode的磁盘使用情况© XXX Page 4 of 19 4、metaNode上的partition的个数 func (metaNode *MetaNode) isWritable()0 码力 | 19 页 | 383.29 KB | 5 月前3CurveFS方案设计
现了块存储,向上提供块设备服务,CurveFS会基于此实现。第一阶段的目标是实现 满足数据库场景的文件接口。 调研 开源fs 当前对已有的开源分布式文件系统进行了调研,主要包括系统架构,元数据内存结构,元数据持久化,调研文档如下: chubaofs: ChubaoFS© XXX Page 3 of 14 1. 2. 3. moosefs: https://kms.netease list 加速,需要新的缓存结构 c. 扩展性/可用性/可靠性 依赖于第三方kv存储,目前是etcd CurveFS 单机内存元数据设计 类似 fastcfs 和 moosefs 的元数据设计方式,采用通用的 dentry,inode 两层映射关系,所有的元数据都缓存在内存中,持久化在 binlog 文件中,binlog采用定期dump的方式删除。基于这种方式的开发: a. 性能 加载: 扩展性不够,受限于单机的内存和磁盘,只能纵向扩展 可用性足够,由于是 master-slave 的方式,master 以同步方式调用 slave,slave 在内存中也缓存了全部元数据信息 master-slave 多副本数据 CurveFS 分布式元数据设计 类似 chubaofs 的元数据设计方式,同样是采用 dentry,inode 两层映射关系,所有的元数据都缓存在内存中。元数据是分片的,使用0 码力 | 14 页 | 619.32 KB | 5 月前3Curve文件系统元数据持久化方案设计
中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+------------+-----+----------------+ 的方式解决在持久化的过程中,读写冲突的问题以及性能问题 实现 1、inode、entry 的编码 给 inode、dentry 增加编码函数 // 这里要尽可能减少 key/value 编码后的字节数,这样同样的内存可以存入较多的 key/value 对 序列化目前主要考虑以下 2 种,一种是参考 chubaofs 顺序编码,一种是利用 protobuf 直接序列化 顺序编码: 利用 prot only }© XXX Page 7 of 12 测试对比: 10 万条随机生成 inode 耗时 (MS) 内存 (KB) 顺序编码 13 5079 protobuf 序列化 81 4996 从对比结果来看,10 万条 inode 耗时相差不大(CPU 并不是瓶颈),内存 protobuf 消耗却更少,推介使用 protobuf 进行序列化 2、KVStore 将当前实现中的 MemoryDentryStorage0 码力 | 12 页 | 384.47 KB | 5 月前3curvefs client删除文件和目录功能设计
是应对打开的文件被其他进程删除的情况 必须实现某种机制,可以查看清理trash中的inode。 孤儿节点只能在metaserver去定期清理,不会在client端,因为client会崩溃,也可能下线了,永远不再起来。所以实际的内存和外存中的inode的删除机制,必须是在metaserver中实现的。client端只是 进行nlink-1的操作。 不能完全依赖forget接口的调用来移除inode,因为client可能会崩溃, 记录一条session到内存中,表示当前inode已经被client打开 client端后续的open只在本地将open num++ client端在close过程中,首先会去open num–, 当发现open num==0时,也就是所有的open都已经close了,此时调用close on metaserver close on metaserver的过程,将移除内存中的session。© XXX0 码力 | 15 页 | 325.42 KB | 5 月前3副本如何用CLup管理PolarDB
CLup的高可用需要VIP 操作系统:CentOS7.X 盘要求有路径:/dev/nvmeXnY 机器需求 4台虚拟机器或物理机 1台做CLup管理节点:内存大于2GB 3台做数据库节点:内存需要大于4GB,最好有反亲和性,即能分布在不同的 物理机上以保证高可用性阿里云的环境中创建Polardb的方法 共享盘使用阿里云自带的高性能Nvme盘,注意使用Nvme磁盘对可用0 码力 | 34 页 | 3.59 MB | 5 月前3BRPC与UCX集成指南
event loop – memory register cache –config file24 UCT ●特点是比较原始,开销小,但是没有很强的功能 ●是网络接口层,主要功能是网卡发现和远程内存传输支持,提供component查询和 memory domain的打开 ●一个component包含若干 memory domain resource,一个memory domain又可以包含若干个 –Active message, atomic operation, tag match, stream27 典型的RDMA栈28 UCX 编程的一些基本概念 ●Context –收集机器资源(内存,网卡等),在应用的各个部分共享 ●Worker –完成ucx的功能,可以在应用程序中调用的函数(不是单独执行的线程) ●Listener –接收连接请求 ●Ep –连接对象,在ep上请求发送和接收290 码力 | 66 页 | 16.29 MB | 5 月前3
共 16 条
- 1
- 2