Dynamic Model in TVM
rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name:0 码力 | 24 页 | 417.46 KB | 5 月前3Model and Operate Datacenter by Kubernetes at eBay (提交版)
Model and Operate Datacenter by Kubernetes at eBay 辛肖刚, Cloud Engineering Manager, ebay 梅岑恺, Senior Operation Manager, ebay Agenda About ebay Our fleet Kubernetes makes magic at ebay Model + Controller Controller How we model our datacenter Operation in large scale Q&A About ebay 177M Active buyers worldwide $22.7B Amount of eBay Inc. GMV $2.6B Reported revenue 62% International revenue 1.1B Kubernetes Onboard Provision Configuration Kubernetes You need onboard something from nothing! Let’s model a datacenter running Kubernetes Onboard Provision Configuration Kubernetes After you define your0 码力 | 25 页 | 3.60 MB | 1 年前3Distributed Ranges: A Model for Building Distributed Data Structures, Algorithms, and Views
0 码力 | 127 页 | 2.06 MB | 5 月前3The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr
The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr @markrussinovich Application models Describes the topology of your application and its components The way developers services and data stores Programming models Distributed Application Runtime (Dapr) Open Application Model (OAM) https://oam.dev State of Cloud Native Application Platforms Kubernetes for applications of concerns Application focused Application focused Container infrastructure Open Application Model Service Job Namespace Secret Volume Endpoint ConfigMap VolumeAttach CronJob Deployment0 码力 | 51 页 | 2.00 MB | 1 年前3C++ Memory Model: from C++11 to C++23
Memory Model C++11 – C++23About Me: alex.dathskovsky@speedata.io www.linkedin.com/in/alexdathskovsky https://www.cppnext.comAlex Dathskovsky | alex.dathskovsky@speedata.io | www.linkedin.com/in/a0 码力 | 112 页 | 5.17 MB | 5 月前3DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e e k - a i / D e e p Work 21 A Contributions and Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE 29 2 B.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 52 页 | 1.23 MB | 1 年前38. Continue to use ClickHouse as TSDB
(3) 新数据更有价值 ► (4) 数据总是随时间变化而不断变化 Why we choose it ► 解决方案 ► (1) Row-Orient Database ► (2) Column-Orient Database ► (3) Time-Series-Orient Database Why we choose it Time Name Age Humidity HeartRate WHERE Time BETWEEN ... AND ... AND Name = “Tom” Red : Data needed Green : Data Scaned ► Column-Orient Database Why we choose it Temperature 11 20 ... 11 21 Time 2019/10/10/ 10:00:00 2019/10/10/ ! Why we choose it How we do ► ClickHouse 实现方式 ► (1) Column-Orient Model ► (2) Time-Series-Orient Model How we do ► Column-Orient Model How we do CREATE TABLE demonstration.insert_view (0 码力 | 42 页 | 911.10 KB | 1 年前3PyTorch Release Notes
--shm-size=in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations and 2X reduced memory storage for intermediates (reducing the overall memory consumption of your model). Additionally, GEMMs and convolutions with FP16 inputs can run on Tensor Cores, which provide an NVIDIA Volta™ tensor cores by using the latest deep learning example networks and model scripts for training. Each example model trains with mixed precision Tensor Cores on NVIDIA Volta and NVIDIA Turing™, 0 码力 | 365 页 | 2.94 MB | 1 年前3keras tutorial
........................................................................................... 17 Model ................................................................................................. ............................................................................... 58 10. Keras ― Model Compilation ..................................................................................... ..... 61 Compile the model ........................................................................................................................................ 62 Model Training ..............0 码力 | 98 页 | 1.57 MB | 1 年前3ThinkJS 2.0 中文文档
md5 = think.md5('think_' + data.pwd); //���������������������� let result = await this.model('user').where({name: data.name, pwd: md5}).find(); //���������������������� if(think.isEmpty(result)){ js | | `-- index.js | |-- logic | | `-- doc.js | `-- model |-- view | `-- zh-CN | |-- common | | |-- error_400.html | //auto render template file index_index.html return this.display(); } } JavaScript src/home/model view www www/development.js ����������� ������ Windows �� Mac OSX �������������� Linux ����0 码力 | 238 页 | 1.87 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100
相关搜索词
DynamicModelinTVMandOperateDatacenterbyKubernetesateBay提交DistributedRangesforBuildingDataStructuresAlgorithmsViewsTheFutureofCloudNativeApplicationswithOpenApplicationOAMDaprC++Memoryfrom11to23DeepSeekV2StrongEconomicalEfficientMixtureExpertsLanguageContinueuseClickHouseasTSDBPyTorchReleaseNoteskerastutorialThinkJS2.0中文文档