积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(205)C++(177)系统运维(20)云计算&大数据(19)Python(15)综合其他(14)人工智能(14)网络与安全(14)Django(13)数据库(12)

语言

全部英语(230)中文(简体)(15)中文(繁体)(10)zh(7)英语(3)日语(2)[zh](1)kor(1)ro(1)

格式

全部PDF文档 PDF(240)PPT文档 PPT(13)DOC文档 DOC(10)其他文档 其他(7)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 270 个.
  • 全部
  • 后端开发
  • C++
  • 系统运维
  • 云计算&大数据
  • Python
  • 综合其他
  • 人工智能
  • 网络与安全
  • Django
  • 数据库
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 英语
  • 日语
  • [zh]
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • DOC文档 DOC
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Modern C++ for Parallelism in High Performance Computing

    in High Performance Computing Victor Eijkhout CppCon 2024 Introduction This poster reports on ‘D2D’, a benchmark that explores elegance of expression and perfor- mance in the context of a High Performance implemented using a number of different approaches to parallelism. Implementations are discussed with performance results. Relevance C++ is making inroads into HPC / Scientific Computing, a field traditionally multi-dimensional arrays through ‘mdspan’, it is interesting to explore what C++ can offer for lower level performance critical operations. Scientific computing is an interesting test cases since many algorithms are
    0 码力 | 3 页 | 91.16 KB | 5 月前
    3
  • pdf文档 High-Performance Numerical Integration in the Age of C++26

    Introduction Firsts steps Context Theoretical foundations Outline of an implementation Conclusion High-Performance Numerical Integration in the Age of C++26 Vincent Reverdy Laboratoire d’Annecy de Physique past, other languages do far better in terms of everything: functionality, ease of use, and even performance This talk The goal is NOT to revolutionize everything or show a library that beats everything Verner’s methods Explicit adaptive Runge-Kutta schemes Slightly enhanced methods with interpolants High-accurary interpolation inside integration steps Interpolation with extra coefficients βi yn+u =
    0 码力 | 57 页 | 4.14 MB | 5 月前
    3
  • pdf文档 High-Performance Cross-Platform Architecture: C++20 Innovations

    is moved into general-purpose registers for computations • Depending on the platform, may see a performance gain at this stageQuat Functions template inline
    0 码力 | 75 页 | 581.83 KB | 5 月前
    3
  • pdf文档 Symbolic Calculus for High-Performance Computing: From Scratch Using C++23

    Binding Constraints Architecture Substitution Construction Conclusion Symbolic Calculus for High-Performance Computing from Scratch using C++23 Vincent Reverdy Laboratoire d’Annecy de Physique des Particules all know about optimization, performance, parallelism, . . . What this talk is not about Complicated maths (you are smart people, you can do it yourself) High-performance computing (you all know about concepts Symbolic calculus (derivatives, integrals) Full blown custom rule-based rewriting High-performance Since formulas have the entire information on the mathematical AST, it’s possible to generate
    0 码力 | 70 页 | 1.80 MB | 5 月前
    3
  • pdf文档 Performance Matters

    PERFORMANCE MATTERS (joint work with Charlie Curtsinger, Grinnell College) emeryberger.com, @emeryberger Emery Berger College of Information and Computer Sciences UMASS AMHERSTA short time ago : un.bmp Ogle is too slow! OGLE’84 is too slow!Transistors (millions) Clock Speed (MHz) Performance used to be easy 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995 gle loading… No mojitos for me… Back to the present…Transistors (millions) Clock Speed (MHz) Performance not easy anymore 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995
    0 码力 | 197 页 | 11.90 MB | 5 月前
    3
  • pdf文档 Performance Engineering: Being Friendly to Your Hardware

    Being Friendly to Your Hardware Performance Engineering A gentle introduction to hardware for software engineers 2Where does C++ run? 3On an abstract C++ machine 4On an abstract C++ machine? multilayer componentsMemory • What about HBM? Not 1024 bits, 8 x 128 instead. Bandwidth will only be high when there is sufficient stream of commands inflight • What about remote memory? CXL and vendor In most practical cases at boot time only Same capacity, different composition => different performance profile From JESD 79-4 DDR4 specificationMemory • Memory system is in the uncore • Cores act
    0 码力 | 111 页 | 2.23 MB | 5 月前
    3
  • pdf文档 PFS SPDK: Storage Performance Development Kit

    0 码力 | 23 页 | 4.21 MB | 5 月前
    3
  • pdf文档 Writing Python Bindings for C++ Libraries: Easy-to-use Performance

    Research Tech at Tower Research Capital ○ High frequency trading firm based out of NYC ● Develop low latency trading systems (C++) ○ Nanoseconds matter ● Develop high throughput research systems (C++ and volume in terabytes ● Program analysis research and functional programming in a past life ● Love performance, software abstractions, and clean APIsWhy Python? ● Writing extensive APIs in Python - low boilerplate We’re at CppCon :) Why Python? Why C++?● Why? ○ Avoid reimplementing complex code for Python ○ Performance ○ Back and forth with user’s python code ○ Interoperability with data structures in Python -
    0 码力 | 118 页 | 2.18 MB | 5 月前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Equipment Effectiveness (OEE). Energy companies must balance EV charger loads and manage grid performance in real time. Banks need to analyze audit logs from their website and application in real time frauds. Logistics companies need real-time tracking and historical analysis of shipments, fleet performance, and warehouse operations to optimize delivery times, reduce costs, and improve supply chain efficiency Technology platforms require real-time monitoring and analytics to personalize experiences and ensure performance. 32. The Interconnection of Analytics, Search, and AI Analytics, search, and AI are deeply interconnected
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising • AI Usage + Cost + Loss Growth Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising 3 Cost of Key Technologies Relative competitive. Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making new tech advances increasingly more powerful, accessible, and economically
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
共 270 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 27
前往
页
相关搜索词
ModernC++forParallelisminHighPerformanceComputingNumericalIntegrationtheAgeof26CrossPlatformArchitecture20InnovationsSymbolicCalculusFromScratchUsing23MattersEngineeringBeingFriendlytoYourHardwarePFSSPDKStorageDevelopmentKitWritingPythonBindingsLibrariesEasyuseRealTimeUnifiedDataLayersNewEraScalableAnalyticsSearchandAITrendsArtificialIntelligence
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩