积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(34)C++(16)云计算&大数据(14)VirtualBox(11)Julia(10)Python(8)Django(6)数据库(5)系统运维(4)TiDB(4)

语言

全部英语(41)中文(繁体)(10)中文(简体)(4)zh(2)英语(2)日语(1)

格式

全部PDF文档 PDF(55)其他文档 其他(5)
 
本次搜索耗时 0.055 秒,为您找到相关结果约 60 个.
  • 全部
  • 后端开发
  • C++
  • 云计算&大数据
  • VirtualBox
  • Julia
  • Python
  • Django
  • 数据库
  • 系统运维
  • TiDB
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • zh
  • 英语
  • 日语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TIDB The Large Scale Relational Database Solution

    The type of customers that would most benefit from this Database solution are: TiDB focuses on scalability, database clustering, and its ability to automatically scale horizontally (across nodes/instances/ product, but is meant to serve a specific market. It is important to note that merely based on its scalability and its ability to process at speed TiDB is not particularly novel, other options in the market TiDB is trying to be is speed, and the lack of delay in queries. TiDB’s ability to incorporate horizontal scaling, with vertical scaling is market defining. Competitors: TiDB feature similar optimizations
    0 码力 | 12 页 | 5.61 MB | 5 月前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    systems and inconsistent formats create silos, limiting accessibility and reducing effectiveness. Scalability & Real-Time Processing – Handling large-scale data efficiently is crucial for real-time analytics unify access across divers data types, reducing complexity in querying distributed datasets. Horizontal scalability across hybrid environments, supporting cloud, on- prem, and edge deployments. Always-on architecture Data Layer to process, analyze, and act on high-velocity data at scale. Designed for speed, scalability, and flexibility, CrateDB seamlessly integrates real-time analytics, full-text and vector search
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 Curve for CNCF Main

    volume space mapping • high performance framework • Use bthread (M bthread map N pthread) for scalability and performance on Multi-thread CPU • Lock free queue design • Memory zero copy design • (Cluster and Pool CRDs) in Kubernetes (in Plan) • Support Operator capability level 5 (in Plan) • horizontal / vertical scaling, auto config tuning, abnormal detection and schedule tuningStorage Engine
    0 码力 | 21 页 | 4.56 MB | 5 月前
    3
  • pdf文档 TiDB 与 TiFlash扩展——向真 HTAP 平台前进 韦万

    format ● An HTAP database needs to store huge amount of data ● Scalability is very important ● TiDB relies on multi-raft for scalability ○ One command to add / remove node ○ Scaling is fully automatic automatic ○ Smooth and painless data rebalance ● TiFlash adopts the same design Scalability ● Perfect Resource Isolation ● Data rebalance based on the “label” mechanism ○ Dedicated nodes for TiFlash /
    0 码力 | 45 页 | 2.75 MB | 5 月前
    3
  • pdf文档 A Relaxed Guide to memory_order_relaxed

    About memory_order_relaxed? ● Just a load, just a store: Full control, excellent efficiency and scalability! ○ Assuming aligned machine-sized atomic objects, that is…What is Not to Like About memory_order_relaxed memory_order_relaxed? ● Just a load, just a store: Full control, excellent efficiency and scalability! ○ Assuming aligned machine-sized atomic objects, that is… ● Small problems: Out of thin air (OOTA) & read About memory_order_relaxed? ● Just a load, just a store: Full control, excellent efficiency and scalability! ○ Assuming aligned machine-sized atomic objects, that is… ● Small problems: Out of thin air
    0 码力 | 32 页 | 278.53 KB | 5 月前
    3
  • pdf文档 Rethinking Task Based Concurrency and Parallelism for Low Latency C++

    locks and therefore parallel task execution with near zero contention between threads ● Excellent Scalability: ○ Over 40x higher throughput than the fastest MPMC queue at scale ○ Over 100x higher throughput locks and therefore parallel task execution with near zero contention between threads ● Excellent Scalability: ○ Over 40x higher throughput than the fastest MPMC queue at scale ○ Over 100x higher throughput locks and therefore parallel task execution with near zero contention between threads ● Excellent Scalability: ○ Over 40x higher throughput than the fastest MPMC queue at scale ○ Over 100x higher throughput
    0 码力 | 142 页 | 2.80 MB | 5 月前
    3
  • pdf文档 Reflection Is Not Contemplation

    All rvalue (reference)s go through the second overload, others through the first • Key problem: scalability • Two definitions • Scales poorly to multiple arguments (T mentioned in the returned type) constexpr a move happens if needed •The additional T() is either a move ctor call OR a no-op, as needed •Scalability problem remains • T still mentioned in the returned type • We can’t return arbitrary expressions
    0 码力 | 45 页 | 2.45 MB | 5 月前
    3
  • pdf文档 CppCon 2021: Persistent Data Structures

    (PETRA) Design Goals ▶ High Performance ▶ Low overheads added to achieve durability ▶ High Scalability ▶ Performance scaling well with increasing number of processes ▶ Non-Blocking ▶ There is guaranteed Demonstration References Persistent Transactional Data System for Linked Data Structures (PETRA) High Scalability ▶ Transactional synchronization for conflicts on nodes ▶ Logical rollback when a semantic conflict
    0 码力 | 56 页 | 1.90 MB | 5 月前
    3
  • pdf文档 The Roles of Symmetry And Orthogonality In Design

    Robust! Useful and Robust! Tricky! • Correlations imply dependencies (with implications for scalability and side-effects) • Assumptions may be invalid for your scenarioCharley Bay - charleyb123 at gmail Robust! Useful and Robust! Tricky! • Correlations imply dependencies (with implications for scalability and side-effects) • Assumptions may be invalid for your scenario Knowing “something” can be more
    0 码力 | 151 页 | 3.20 MB | 5 月前
    3
  • pdf文档 julia 1.10.10

    property set. In particular, this is the case when printing arrays with multiple columns (where horizontal space is limited): julia> show(IOContext(stdout, :compact=>true), Polar(3, 4.0)) 3.04.0im julia> higher precedence than semicolons, performing any horizontal concatenations first and then concatenating the result. Using double semicolons for the horizontal concatenation, on the other hand, performs any 3}: [:, :, 1] = 1 3 5 2 4 6 [:, :, 2] = 7 9 11 8 10 12 Like before, spaces (and tabs) for horizontal concatenation have a higher precedence than any number of semicolons. Thus, higher-dimensional
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
共 60 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
TIDBTheLargeScaleRelationalDatabaseSolutionRealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAICurveCNCFMainTiDBTiFlash扩展HTAP平台前进韦万RelaxedGuidetomemoryorderrelaxedRethinkingTaskBasedConcurrencyParallelismLowLatencyC++ReflectionIsNotContemplationCppCon2021PersistentStructuresRolesofSymmetryAndOrthogonalityInDesignjulia1.1010
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩