积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(209)C++(180)云计算&大数据(29)系统运维(23)综合其他(15)Python(15)人工智能(15)网络与安全(15)Django(13)数据库(11)

语言

全部英语(235)中文(简体)(25)中文(繁体)(10)zh(9)英语(3)日语(2)[zh](1)kor(1)ro(1)

格式

全部PDF文档 PDF(257)DOC文档 DOC(11)PPT文档 PPT(11)其他文档 其他(7)TXT文档 TXT(1)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 287 个.
  • 全部
  • 后端开发
  • C++
  • 云计算&大数据
  • 系统运维
  • 综合其他
  • Python
  • 人工智能
  • 网络与安全
  • Django
  • 数据库
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 英语
  • 日语
  • [zh]
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 其他文档 其他
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Performance Matters

    PERFORMANCE MATTERS (joint work with Charlie Curtsinger, Grinnell College) emeryberger.com, @emeryberger Emery Berger College of Information and Computer Sciences UMASS AMHERSTA short time ago : un.bmp Ogle is too slow! OGLE’84 is too slow!Transistors (millions) Clock Speed (MHz) Performance used to be easy 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995 gle loading… No mojitos for me… Back to the present…Transistors (millions) Clock Speed (MHz) Performance not easy anymore 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995
    0 码力 | 197 页 | 11.90 MB | 5 月前
    3
  • pdf文档 Quickly Testing Qt Desktop Applications With Approval Tests

    1 Quickly Testing Qt Desktop Applications with Approval Tests Clare Macrae (She/her) clare@claremacrae.co.uk 16 September 2020 CppCon (Online)2 Audience: Developers testing Desktop GUIs, including and readable with fixtures • ApprovalTests.Cpp.Qt feedback welcome!80 Quickly Test Qt Desktop Applications • All links from this talk, and more, via: – bit.ly/TestingQt – github.com/claremacrae/talks
    0 码力 | 77 页 | 6.96 MB | 5 月前
    3
  • pdf文档 Performance Engineering: Being Friendly to Your Hardware

    Being Friendly to Your Hardware Performance Engineering A gentle introduction to hardware for software engineers 2Where does C++ run? 3On an abstract C++ machine 4On an abstract C++ machine? In most practical cases at boot time only Same capacity, different composition => different performance profile From JESD 79-4 DDR4 specificationMemory • Memory system is in the uncore • Cores act Multiple instructions resulting in fewer operations • ISA restrictions may have impact to performance Imaginary ARM mov r20, 0x123456789abcdef0Register renaming 52 Branching Fetch Decode Queue
    0 码力 | 111 页 | 2.23 MB | 5 月前
    3
  • pdf文档 PFS SPDK: Storage Performance Development Kit

    0 码力 | 23 页 | 4.21 MB | 5 月前
    3
  • pdf文档 Modern C++ for Parallelism in High Performance Computing

    Poster submission: Modern C++ for Parallelism in High Performance Computing Victor Eijkhout CppCon 2024 Introduction This poster reports on ‘D2D’, a benchmark that explores elegance of expression and context of a High Performance Computing ‘mini-application’. The same code has been implemented using a number of different approaches to parallelism. Implementations are discussed with performance results. Relevance multi-dimensional arrays through ‘mdspan’, it is interesting to explore what C++ can offer for lower level performance critical operations. Scientific computing is an interesting test cases since many algorithms are
    0 码力 | 3 页 | 91.16 KB | 5 月前
    3
  • pdf文档 Express Your Expectations: A Fast, Compliant JSON Pull Parser for Writing Robust Applications

    console.log(object.foo) Jonathan Müller A fast, compliant JSON pull parser for writing robust applications undefined Jonathan Müller — @foonathan Express your expectations CppCon 2023-10-03 10JSON parsing std::print("{}\n", object.at("foo")); Jonathan Müller A fast, compliant JSON pull parser for writing robust applications Uncaught exception. Jonathan Müller — @foonathan Express your expectations CppCon 2023-10-03
    0 码力 | 143 页 | 736.91 KB | 5 月前
    3
  • pdf文档 High-Performance Numerical Integration in the Age of C++26

    Introduction Firsts steps Context Theoretical foundations Outline of an implementation Conclusion High-Performance Numerical Integration in the Age of C++26 Vincent Reverdy Laboratoire d’Annecy de Physique des past, other languages do far better in terms of everything: functionality, ease of use, and even performance This talk The goal is NOT to revolutionize everything or show a library that beats everything yn+1 = yn + h s � i=1 biki ki = f � tn + cih, yn + h s � j=1 aijkj � , i = 1, . . . , s Performance concerns The Butcher Tableau can be very sparse Null coefficients should be optimized away Compilers
    0 码力 | 57 页 | 4.14 MB | 5 月前
    3
  • pdf文档 Writing Python Bindings for C++ Libraries: Easy-to-use Performance

    volume in terabytes ● Program analysis research and functional programming in a past life ● Love performance, software abstractions, and clean APIsWhy Python? ● Writing extensive APIs in Python - low boilerplate We’re at CppCon :) Why Python? Why C++?● Why? ○ Avoid reimplementing complex code for Python ○ Performance ○ Back and forth with user’s python code ○ Interoperability with data structures in Python - inform(); } }Dispatchers and callbacks ● Callbacks are a common theme in many dispatcher based applications ● Dispatching may happen in: ○ The main python thread, but blocked ○ A separate thread, thus
    0 码力 | 118 页 | 2.18 MB | 5 月前
    3
  • pdf文档 High-Performance Cross-Platform Architecture: C++20 Innovations

    is moved into general-purpose registers for computations • Depending on the platform, may see a performance gain at this stageQuat Functions template inline
    0 码力 | 75 页 | 581.83 KB | 5 月前
    3
  • pdf文档 Symbolic Calculus for High-Performance Computing: From Scratch Using C++23

    Binding Constraints Architecture Substitution Construction Conclusion Symbolic Calculus for High-Performance Computing from Scratch using C++23 Vincent Reverdy Laboratoire d’Annecy de Physique des Particules all know about optimization, performance, parallelism, . . . What this talk is not about Complicated maths (you are smart people, you can do it yourself) High-performance computing (you all know about concepts Symbolic calculus (derivatives, integrals) Full blown custom rule-based rewriting High-performance Since formulas have the entire information on the mathematical AST, it’s possible to generate
    0 码力 | 70 页 | 1.80 MB | 5 月前
    3
共 287 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 29
前往
页
相关搜索词
PerformanceMattersQuicklyTestingQtDesktopApplicationsWithApprovalTestsEngineeringBeingFriendlytoYourHardwarePFSSPDKStorageDevelopmentKitModernC++forParallelisminHighComputingExpressExpectationsFastCompliantJSONPullParserWritingRobustNumericalIntegrationtheAgeof26PythonBindingsLibrariesEasyuseCrossPlatformArchitecture20InnovationsSymbolicCalculusFromScratchUsing23
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩