积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(15)人工智能(15)后端开发(1)C++(1)

语言

全部zh(6)英语(4)[zh](1)fj(1)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.010 秒,为您找到相关结果约 16 个.
  • 全部
  • 综合其他
  • 人工智能
  • 后端开发
  • C++
  • 全部
  • zh
  • 英语
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Dynamic Model in TVM

    reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with dynamism loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in Invoke Invokes a function at in index. InvokeClosure Invokes a Relay closure. InvokePacked Invokes a TVM compiled kernel. AllocStorage Allocates a storage block. AllocTensor Allocates a tensor value of
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Affiliates. All rights reserved. Animesh Jain Amazon SageMaker Neo Compilation of Quantized Models in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization Overview Services, Inc. or its Affiliates. All rights reserved. Quantization in TVM • Quantization within TVM - Automatic Quantization • TVM stack ingests a FP32 graph and a small dataset • Finds suitable quantization QNN Dialect • TVM ingests a pre-quantized graph in TFLite or MxNet • Use high-level wrapper ops of QNN dialect© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. TVM Overview Framework
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 TVM@AliOS

    PRESENTATION AGENDA 人 人 e 人 e@ TVM Q@ AliOs Overview TVM @ AliOs ARM CPU TVM @ AliOos Hexagon DSP TVM @ Alios Intel GPU Misc /NiiOS ! 驱动万物智能 PART ONE TVM Q@ AliOs Overview AiOS 1驱动万物智能 AliOs ROEWE负风 auto industry /NiiOS ! 驱动万物智能 TVM Timeline @ Alios 吕 2018.4 咏 2018.12 | 2019.6 ee 2019.10 Alios TVM Team Set up TFLite Quantized RX5 MAX OpenVINO @ Intel GPU AliDS AR-Nav Product @ SUV Release and adopt TVM (Apollo Lake Gold) Ready accelerated NLU model
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 TVM工具组

    绝赞招聘中 TVM CAFFE 前端 2019·11·16绝赞招聘中 TVM 在平头哥 • 工具链产品 平头哥芯片平台发布的配套软件中, TVM 是工具链产品的重要组成部分: 负责将预训练好的 caffe 或者 tensorflow 的模型,转换到 LLVM IR,最后生成可以在无剑 SoC 平台上 执行的二进制。绝赞招聘中 为何添加 caffe 前端? 客户需求 评估 评估阶段:客户用于评估芯片的网络,caffe 模型占很大比重。 竞品已支持 caffe 前端 当前各大芯片厂商的部署工具大多数都支持,支持 caffe 前端有利于提高竞争力。 开源社区 存量的开源 caffe 网络模型众多,TVM 直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net
    0 码力 | 6 页 | 326.80 KB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    TVM: Where are we going Tianqi ChenCurrent Deep Learning Landscape Frameworks and Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge FPGA Cloud FPGA optimization potential benefit: 1.5x speedup Engineering intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    © Copyright 2018 Xilinx Elliott Delaye FPGA CNN Accelerator and TVM© Copyright 2018 Xilinx TVM Target devices and models >> 2 HW Platforms ZCU102 ZCU104 Ultra96 PYNQ Face detection Pose estimation Xilinx TVM as Unified ML Front End >> 6 Relay (and NNVM) Graph Parser XIR Compiler Quantizer Partitioner @relay.transform.module_pass(opt_level=4) class AccelModule:© Copyright 2018 Xilinx TVM Partitioning SSD)© Copyright 2018 Xilinx TVM Graph Partitioning/Fusion >> 8 Subgraph 1 Parallel Subgraphs Post-Processing Pre-Processing CPU FPGA CPU CPU FPGA© Copyright 2018 Xilinx TVM Code Generation >> 9 Subgraph
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 亿联TVM部署

    �������������� ����� TVM for deloyment www.yealink.com dolphintear� ������������������� �����������������������3 � ���������1��1��,�/����,�1��,�������/��,�����/������,� .������1���1��,4 ����������� not deploy our network(with depthwise conv2d, ) 2. TVM can not only deploy our network, but also get a good performance gain by autotuning 3. TVM can support many kinds of hardware platform: Intel/arm For application on 32bits, no support of 32bit tensorflow , a workround from FrozenGene a. python/tvm/contrib/ndk.py options = options if options else [ “-shared”, “-fPIC”, “-m32”] b. python tensorflow_blur
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You. NMS is supported by TVM!© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Let TVM Be the Compiler of Your Chip Your chip can run any models Your compiler (TVM) supports multiple reserved. Example showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1)
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    TVM at Facebook Lots of contributors at FB and elsewhere- Performance matters a lot - Heterogenous computing environment - High variety of workloads - Ever-increasing set of primitives (over 500 500 aten kernels) - Interpreter methods not delivering generalized performance 2 Why TVM? XTVM for Speech Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead makes interpreter infeasible - Reduce FLOPs with
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    Outline 计算平台事业部 。TensorCore AutoCodeGen in TVM “。FP16 Mixed-Precision Training on PAI 。INT8 Inference on PAI-Blade 计算平台事业部 COMPUTING PLATFORM nvcuda::wmma::mem_col_majon Background 1 。TVM TensorCore Intrinsics 。Authored by @Hzfengsy 。 Intrinsics: tvm_load_matrix_sync tvm_mma_sync … “New Memory Scopes: wmma.matrix_a/b, accumulator 26X 1.51X 1.30X 1.21X Performance on T4 计算下从事业部 国 Cublas INT8, 9 国 TVM INT8 国 TVM INT4 罩 TVMINT1 675 旨 号 昌 45 全 2.25 ”cublas baseline (512, 64, 512 ) (512, 32, 512
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
DynamicModelinTVMMeetupQuantizationAliOS工具WhereAreWeGoingXDNNNov2019亿联部署BringYourOwnCodegentoFacebookAWSTalkPAIShanghai20191116
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩