腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明
TKE使用eBPF优化 k8s service Jianmingfan 腾讯云 目录 01 Service的现状及问题 优化的方法 02 和业界方法的比较 性能测试 03 04 解决的BUG 未来的工作 05 06 01 Service的现状及问题 什么是k8s Service • 应用通过固定的VIP访问一组pod,应用对Pod ip变化 无感知 • 本质是一个负载均衡器 控制面和数据面算法复杂度都是O(1) • 经历了二十多年的运行,比较稳定成熟 • 支持多种调度算法 优势 IPVS mode 不足之处 • 没有绕过conntrack,由此带来了性能开销 • 在k8s的实际使用中还有一些Bug 02 优化的方法 指导思路 • 用尽量少的cpu指令处理每一个报文 • 不能独占cpu • 兼顾产品的稳定性,功能足够丰富 弯路 度算法丰富。 • 优势 • 完全绕过了conntrack/iptables • 对内核修改更小 04 性能测试 性能测试踩过的坑 设置测试环境 • 配置一样的cluster,性能可能不同。 • 多个CVM分布在同一台物理主机 • 同一个cluster,在不同的时间段,性能可能不同 • cpu 超卖 • 使用同一个cluster,在相近的时间段,比较两种mode • 使得cpu成为瓶颈点0 码力 | 27 页 | 1.19 MB | 9 月前3清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单
将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 dynamicrelationship between predators and prey. 中文学术写作润色指令 指令:作为中文学术论文写作优化助手,您的任务是改进所提供文本的拼写、语法、清晰度、简洁性和整体可读性, 同时分解长句,减少重复,并提供改进建议。请仅提供文本的更正版本,并附上解释。以 markdown 表格的形式提供 输出结果,每个句子单独成行。第一列为原句,第二列为修改后的句子,第三列为中文解释。请编辑以下文本: 1978)和栖息环境复杂程度,会影响 捕食以及捕食者与猎物之间的动态关系。 将"因子"替换为"因素",删除了 多余的”如:"和"等" 英文学术写作润色指令 指令:下面是一篇学术论文中的一个段落。润色文字以符合学术风格,改进拼写、语法、清晰度、简洁性和整体可 读性。必要时,重写整个句子。此外,用标记符表格列出所有修改,并解释修改原因。 原始文本 修正后文本 Numerous marine molluscs, including0 码力 | 85 页 | 8.31 MB | 7 月前3TiDB v8.5 中文手册
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64 2.2.7 改进提升 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 102 3.4.6 HTAP 性能监控 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 372 4.8.4 优化向量搜索性能 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 9 月前3TiDB v8.4 中文手册
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 59 2.2.7 改进提升 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 98 3.4.6 HTAP 性能监控 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 368 4.8.4 优化向量搜索性能 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 9 月前3TiDB v8.2 中文手册
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42 2.2.4 改进提升 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 82 3.4.6 HTAP 性能监控 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 391 4 4.9 优化 SQL 性能 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 4987 页 | 102.91 MB | 9 月前32024 中国开源开发者报告
系列凭借灵活的多尺寸选项,强大的多语言支持以及友好的模型授权功能, 赢得了社区开发者的高度评价。DeepSeek 通过引入多头潜在注意力(Multi-head Latent Attention, MLA)技术,在性能和成本上实现了革命性突破,开创高性价比的 AI 新纪元。 智谱的 CogVideoX 系列文生视频模型,成为全球首批开源的文生视频模型之一,不仅在 技术方面让中国视频生成模型列入领先梯队,强化了中国模型在全球范围的竞争力,也为国际开 组织给予减轻或免承担法律责任;《生成式人工智能服务管理暂行办法》 则明确了人工智能技 术的使用和合规要求,促进了开源模型在合规框架下良性发展。 变革 端上模型的兴起与隐私保护 随着小型模型的性能逐步增强,更多高级 AI 正转向在个人设备上运行。这一趋势不仅显著 降低了云端推理成本,还提升了用户隐私控制。 中国 AI 社区在这一领域也做了重要贡献,推出了如 Qwen2-1.5B、MiniCPM 尽管存在电池续航和内存占用过大等挑战, 端上模型代表了 AI 技术隐私保护和成本优化的未来方向。中国在这一领域的探索,为行业提供 了宝贵经验。 推理扩展法则的潜力释放 通过推理扩展法则,模型性能可通过延长“思考时间”而进一步优化。这一技术模拟了人类 “深思熟虑”的过程,显著提升了模型在逻辑推理和复杂任务中的表现。 中国开源社区在逻辑推理领域推出了许多创新项目,包括阿里巴巴国际的 Macro-o1、通义0 码力 | 111 页 | 11.44 MB | 8 月前3Rust 程序设计语言 简体中文版 1.85.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 12.3. 重构以改进模块化与错误处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 13.3. 改进之前的 I/O 项目 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 13.4. 性能比较:循环对迭代器 . . . . . . . . 查 看其它安装选项。 接下来的步骤会安装最新的稳定版 Rust 编译器。Rust 的稳定性确保本书所有示例在最新版本 的 Rust 中能够继续编译。不同版本的输出可能略有不同,因为 Rust 经常改进错误信息和警 告。也就是说,任何通过这些步骤安装的最新稳定版 Rust,都应该能正常运行本书中的内容。 命令行标记 本章和全书中,我们会展示一些在终端中使用的命令。所有需要输入到终端的行都以 $0 码力 | 562 页 | 3.23 MB | 9 天前3TiDB中文技术文档
生成自签名证书 监控集群 整体监控框架概述 重要监控指标详解 组件状态 API & 监控 扩容缩容 集群扩容缩容方案 使用 Ansible 扩容缩容 升级 升级组件版本 TiDB 2.0 升级操作指南 性能调优 备份与迁移 备份与恢复 数据迁移 数据迁移概述 数据迁移 故障诊断 TiDB 周边工具 Syncer Loader TiDB-Binlog PD Control TiKV Control TiDB 0 RC1 1.1 Beta 1.1 Alpha 1.0 Pre-GA RC4 RC3 RC2 RC1 TiDB 路线图 性能测试 TiDB Sysbench 性能测试报告 - v1.0.0 TiDB TPC-H 50G 性能测试报告 - v2.0 TiDB Sysbench 性能对比测试报告 - v2.0.0 对比 v1.0.0 - 5 - 本文档使用 书栈(BookStack.CN) 构建 致谢 生成自签名证书 监控集群 整体监控框架概述 重要监控指标详解 组件状态 API & 监控 扩容缩容 集群扩容缩容方案 使用 Ansible 扩容缩容 升级 升级组件版本 TiDB 2.0 升级操作指南 性能调优 备份与迁移 备份与恢复 数据迁移 数据迁移概述 全量导入 增量导入 故障诊断 TiDB 周边工具 Syncer Loader TiDB-Binlog PD Control TiKV Control0 码力 | 444 页 | 4.89 MB | 5 月前3DeepSeek从入门到精通(20250204)
维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(O le),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 设计清晰、精确的提示语结构 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维0 码力 | 104 页 | 5.37 MB | 7 月前3清华大学 DeepSeek 从入门到精通
维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(O le),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 设计清晰、精确的提示语结构 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维0 码力 | 103 页 | 5.40 MB | 8 月前3
共 148 条
- 1
- 2
- 3
- 4
- 5
- 6
- 15