积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(91)Python(37)C++(25)Julia(18)Conda(14)云计算&大数据(11)VirtualBox(11)Rust(11)数据库(5)TiDB(5)

语言

全部英语(86)中文(繁体)(11)中文(简体)(5)日语(2)西班牙语(1)韩语(1)葡萄牙语(1)

格式

全部PDF文档 PDF(107)PPT文档 PPT(1)其他文档 其他(1)
 
本次搜索耗时 0.275 秒,为您找到相关结果约 109 个.
  • 全部
  • 后端开发
  • Python
  • C++
  • Julia
  • Conda
  • 云计算&大数据
  • VirtualBox
  • Rust
  • 数据库
  • TiDB
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 日语
  • 西班牙语
  • 韩语
  • 葡萄牙语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    现在让我们看看通过 Cargo 构建和运行 “Hello, world!” 程序有什么不同!在 hello_cargo 目录 下,输入下面的命令来构建项目: $ cargo build Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo) Finished dev [unoptimized + debuginfo] target(s) 的输出。Cargo 发现文件并没有被 改变,所以它并没有重新构建,而是直接运行了二进制文件。如果修改了源文件的话,Cargo 会在运行之前重新构建项目,并会出现像这样的输出: $ cargo run Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo) Finished dev [unoptimized + debuginfo] target(s) println!("Hello, world!"); } 现在使用 cargo run 命令,一步完成 “Hello, world!” 程序的编译和运行: $ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished `dev` profile [unoptimized +
    0 码力 | 562 页 | 3.23 MB | 9 天前
    3
  • pdf文档 Just-in-Time Compilation - J F Bastien - CppCon 2020

    primitives than even what a CISC processor does. JiTs can benefit from this size saving by only compiling the code that matters, and leaving the rest in a compressed form.3. Interpreted programs tend to word…Java “Java” That’s right, I said it, at a C++ conference…Java At least I didn’t say “Rust”…Compiling Java just in time Avoiding unnecessary overhead is crucial for fast compilation. In many compilers compilers, constructing an intermediate representation (IR) of a method is a standard process. When compiling from Java bytecode, however, we can eliminate that overhead. The bytecodes themselves are an IR
    0 码力 | 111 页 | 3.98 MB | 5 月前
    3
  • pdf文档 2020: The Year of Sanitizers?

    2020: The Year of Sanitizers? Compiling/linking from command-line Compiling a single static EXE 
 link the static runtime asan-i386.lib and the cxx library Compiling an EXE with /MT runtime which to have asan-i386.lib linked and 
 the DLLs need the clang_rt.asan_dll_thunk-i386.lib When compiling with the /MD dynamic runtime 
 all EXE and DLLs with instrumentation should be linked with 
 asan_dynamic-i386
    0 码力 | 135 页 | 27.77 MB | 5 月前
    3
  • pdf文档 A (Short) Tour of C++ Modules

    Most of them are due to the separation of visibility of names when compiling the interface TU (unrestricted visibility) compiling TUs that import the module (restricted visibility) This applies to void baz(T) {} template void bar(T t) { baz(t); // ok while compiling the module interface } // fails to find 'baz' when 'bar' is implicitly
    0 码力 | 62 页 | 4.20 MB | 5 月前
    3
  • pdf文档 Writing Python Bindings for C++ Libraries: Easy-to-use Performance

    "pybind11 incrementer"; m.def("increment", &cpp_increment, "Incrementing function"); } // After compiling above into hello_world_pybind11.so, in python from hello_world_pybind11 import increment while namespace boost::python; def("increment", &cpp_increment, "Incrementing function"); } // After compiling above into hello_world_bpy.so, in python from hello_world_bpy import increment while i < max_i: interpreter interprets some bytecode each time it hits the given loop ● Perhaps reduce the overhead by “compiling” this code? for i, row in enumerate(rows): cur_trade_size = 0 for
    0 码力 | 118 页 | 2.18 MB | 5 月前
    3
  • pdf文档 Julia 1.11.4

    Getting Started Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download and install Julia by following the instructions at https://julialang.org/downloads/ y::Float64. The point of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on the specific types of x and y, and by compiling different specializations take several seconds to load because executing all of the statements in a module often involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this time. Precompiled
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    Getting Started Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download and install Julia by following the instructions at https://julialang.org/downloads/ y::Float64. The point of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on the specific types of x and y, and by compiling different specializations take several seconds to load because executing all of the statements in a module often involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this time. Precompiled
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    Getting Started Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download and install Julia by following the instructions at https://julialang.org/install/ y::Float64. The point of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on the specific types of x and y, and by compiling different specializations take several seconds to load because executing all of the statements in a module often involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this time. Precompiled
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 julia 1.13.0 DEV

    Getting Started Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download and install Julia by following the instructions at https://julialang.org/install/ y::Float64. The point of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on the specific types of x and y, and by compiling different specializations take several seconds to load because executing all of the statements in a module often involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this time. Precompiled
    0 码力 | 2058 页 | 7.45 MB | 3 月前
    3
  • pdf文档 Julia 1.12.0 RC1

    Getting Started Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download and install Julia by following the instructions at https://julialang.org/install/ y::Float64. The point of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on the specific types of x and y, and by compiling different specializations take several seconds to load because executing all of the statements in a module often involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this time. Precompiled
    0 码力 | 2057 页 | 7.44 MB | 3 月前
    3
共 109 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 11
前往
页
相关搜索词
Rust程序设计程序设计语言简体中文文版中文版简体中文版1.85JustinTimeCompilationBastienCppCon2020TheYearofSanitizersShortTourC++ModulesWritingPythonBindingsforLibrariesEasytousePerformanceJulia1.11DocumentationReleaseNotesjulia1.13DEV1.12RC1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩