积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(45)云计算&大数据(28)Python(22)Service Mesh(14)系统运维(12)存储(12)前端开发(9)综合其他(7)数据库(6)人工智能(6)

语言

全部中文(简体)(67)英语(21)中文(繁体)(13)中文(简体)(4)西班牙语(1)zh(1)

格式

全部PDF文档 PDF(107)
 
本次搜索耗时 0.053 秒,为您找到相关结果约 107 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Python
  • Service Mesh
  • 系统运维
  • 存储
  • 前端开发
  • 综合其他
  • 数据库
  • 人工智能
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 西班牙语
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Curve核心组件之snapshotclone

    k和CloneTask,并向上提供如 cancel task等功能。 SnapshotTaskManager & CloneTaskManager: • 快照克隆核心模块,负责向下调用DataStore,MetaStore等底层 模块,实现快照和克隆的具体功能。 SnapshotCore & CloneCore:快照克隆服务器架构 • SnapshotDataStore负责管理快照转储的数据块,通过调用 chunkserver meta object data object data object S3 Snap Task etcd mds client 3.获取快照元数据 datastore metastore http service clone Task user 快照元数据 2.创建内部快照 5.删除内部快照 快照数据 1.发起快照 SnapshotCloneServer meta object data object data object S3 Snap Task etcd MDS client 2.创建克隆卷 3.分配卷空间 7.拷贝数据 datastore metastore http service clone Task user 快照、克隆元数据 SnapshotCloneServer 1.发起克隆 5.8.9.更新元数据克隆卷状态变化
    0 码力 | 23 页 | 1.32 MB | 5 月前
    3
  • pdf文档 Curve核心组件之chunkserver

    ChunkServer架构并发控制层,负责对chunkserver的IO 请求进行并发控制,对上层的读写请 求安照chunk粒度进行Hash,使得不同 chunk的请求可以并发执行。 ChunkServer架构DataStore是对chunk落盘逻辑的封装。 包含chunkfile的创建、删除,以及实际 对chunk的读写,chunk基本cow的快照, 克隆chunk的管理等等。 ChunkServer架构L ⑨ 等CS1上的copyset数量恢复到和其它节点相差不大时,集群回 到均衡状态,迁移结束ChunkServer核心模块-DataStore ChunkServer的目录结构: • 每个copyset一个目录,后面三个目录由braft管理,data目录由DataStore管理 • Curve中的Chunk全部来自Chunkfilepool,是在系统初始化的时候预创建好并覆盖写过一遍的一些chunk,减少IO放大CURVE基本架构
    0 码力 | 29 页 | 1.61 MB | 5 月前
    3
  • pdf文档 Just-in-Time Compilation - J F Bastien - CppCon 2020

    �**p2) { AddCallProto("OpenFile()"); AddCallProto("DataLoad(VALUE)"); AddCallProto("DataStore(VALUE)"); AddCallProto("CloseFile()"); AddCallProgram(ProgramBefore, "OpenFile"); A if (IsInstType(i, InstTypeStore)) AddCallInst(i, InstBefore, "DataStore", EffAddrValue); } } – 1994 A system for building customized program analysis tools
    0 码力 | 111 页 | 3.98 MB | 5 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考:
    0 码力 | 104 页 | 5.37 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考:
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 Service Mesh 高可用在企业级生产中的实践

    Service Mesh 等微服务治理框架有丰富实践经验2/总页数 /01 /02 /03 Service Mesh 与 Spring Cloud 应 用的互通、共治 注册中心与 高可用方案 通过治理策略 保证服务高可用3/总页数 Service Mesh 与 Spring Cloud 应用的互通、共治 /014/总页数 优点 • 微服务架构的集大成者 • 轻量级组件 • 开发灵活、简便 • • 多租户?16/总页数 通过治理策略保证服务高可用 /0317/总页数 治理策略 & 高可用 描述 N个9 可用性级别 年度停机时间 基本可用 2个9 99% 87.6小时 较高可用 3个9 99.9% 8.8小时 具备故障自动恢复 能力可用 4个9 99.99% 53分钟 极高可用 5个9 99.999% 5分钟18/总页数 治理策略 & 高可用 不可用因素 程序和配置出 机房故障 核心交换机故 障、机房停电 容量 服务容量不足 依赖服务 响应超时19/总页数 治理策略 & 高可用 • 微服务高可用 设计手段 服务高可用 服务限流 方法容错 负载均衡+ 实例容错 柔性化/异步化 服务冗余 服务分流 存储高可用 熔断20/总页数 治理策略 & 高可用 • 微服务高可用设计手段 • 限流 • 熔断 • 负载均衡+实例容错 Spring
    0 码力 | 38 页 | 1.38 MB | 5 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C# 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.3 构建二叉树问题 . . . 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www
    0 码力 | 379 页 | 18.48 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Dart 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 12.3 构建二叉树问题 . . . 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www
    0 码力 | 378 页 | 18.46 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Kotlin 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 12.3 构建二叉树问题 . . . 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www
    0 码力 | 382 页 | 18.48 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 JavaScript 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.3 构建二叉树问题 . . . 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www
    0 码力 | 379 页 | 18.47 MB | 9 月前
    3
共 107 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 11
前往
页
相关搜索词
Curve核心组件snapshotclonechunkserverJustinTimeCompilationBastienCppCon2020DeepSeek入门精通20250204清华华大大学清华大学ServiceMesh可用企业企业级生产实践Hello算法1.2简体中文简体中文C#DartKotlinJavaScript
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩