积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(318)Python(191)综合其他(172)Weblate(152)Java(48)Spring(48)PyWebIO(40)Django(38)区块链(32)Jupyter(31)

语言

全部英语(444)中文(简体)(108)法语(1)日语(1)韩语(1)英语(1)

格式

全部其他文档 其他(556)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 556 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • Weblate
  • Java
  • Spring
  • PyWebIO
  • Django
  • 区块链
  • Jupyter
  • 全部
  • 英语
  • 中文(简体)
  • 法语
  • 日语
  • 韩语
  • 英语
  • 全部
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Agda User Manual v2.5.4.2

    abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided where {-# BUILTIN UNIT ⊤ #-} Agda needs to know about the unit type since some of the primitive operations in the reflected type checking monad return values in the unit type. Booleans module Agda.Builtin NATMODSUCAUX are built-ins bind helper functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m
    0 码力 | 216 页 | 207.61 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.5.4.1

    abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided where {-# BUILTIN UNIT ⊤ #-} Agda needs to know about the unit type since some of the primitive operations in the reflected type checking monad return values in the unit type. Booleans module Agda.Builtin NATMODSUCAUX are built-ins bind helper functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m
    0 码力 | 216 页 | 207.64 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.5.4

    abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided where {-# BUILTIN UNIT ⊤ #-} Agda needs to know about the unit type since some of the primitive operations in the reflected type checking monad return values in the unit type. Booleans module Agda.Builtin NATMODSUCAUX are built-ins bind helper functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m
    0 码力 | 216 页 | 207.63 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0.1

    possible to express the type of square matrices of length n, it is also possible to define the type of operations on matrices so that the lengths are correct. For instance the type of matrix multiplication is typing, it is for example possible to define equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided
    0 码力 | 256 页 | 247.15 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0

    possible to express the type of square matrices of length n, it is also possible to define the type of operations on matrices so that the lengths are correct. For instance the type of matrix multiplication is typing, it is for example possible to define equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided
    0 码力 | 256 页 | 246.87 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.3

    possible to express the type of square matrices of length n. It is also possible to define the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is using only typing it is possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided
    0 码力 | 305 页 | 375.80 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.2

    possible to express the type of square matrices of length n. It is also possible to define the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is using only typing it is possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided
    0 码力 | 304 页 | 375.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.1

    possible to express the type of square matrices of length n. It is also possible to define the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is using only typing it is possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided
    0 码力 | 297 页 | 375.42 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1

    possible to express the type of square matrices of length n. It is also possible to define the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is using only typing it is possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about equality ≡ℤ with the provided
    0 码力 | 297 页 | 375.42 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2

    possible to express the type of square matrices of length n. It is also possible to define the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is using only typing it is possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular the _+_ operation is left-associative. More information about mixfix operator like the arithmetic operations. You can also check this associativity example. To continue writing our proof, we now pick a variable
    0 码力 | 348 页 | 414.11 KB | 1 年前
    3
共 556 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 56
前往
页
相关搜索词
AgdaUserManualv25.46.06.16.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩