积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(367)云计算&大数据(242)数据库(123)综合其他(116)Python(105)系统运维(94)Go(60)前端开发(57)机器学习(53)OpenShift(49)

语言

全部中文(简体)(923)英语(35)中文(简体)(16)西班牙语(2)日语(2)zh(2)JavaScript(1)法语(1)zh-cn(1)

格式

全部PDF文档 PDF(999)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 999 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 数据库
  • 综合其他
  • Python
  • 系统运维
  • Go
  • 前端开发
  • 机器学习
  • OpenShift
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 西班牙语
  • 日语
  • zh
  • JavaScript
  • 法语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Oracle 和 MySQL 性能优化感悟

    移动APP性能监测实践(iOS篇) 杨凯 杨凯 杨凯@听云 iOS研发工程师 yangkai@tingyun.com 关于APM APM的终极使命 APM价值的直接体现 监测的根本在数据获取 监控 技术 NSURLProtocol Method swizzling Isa swizzling Isa swizzling+NSProxy Others NSURLProtocol
    0 码力 | 19 页 | 3.82 MB | 1 年前
    3
  • pdf文档 Go性能优化概览-曹春晖

    业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p io/personal_website/research/interactive_latency.html 优化的前置知识 • 要能读得懂基本的调⽤栈 • 了解 Go 语⾔内部原理(runtime,常⽤标准库) • 了解常⻅的⽹络协议(http、pb) https://github.com/bagder/http2-explained https://github.com/bagder/http3-explained ⽤户声明的对象,被放在栈上还是堆上, 是由编译器的 escape analysis 来决定的 ⽅法论 内存使⽤优化 CPU 使⽤优化 阻塞优化 GC 优化 标准库优化 runtime 优化 应⽤层优化 底层优化 • 越靠近应⽤层,优化带来的效果越好 • 涉及到底层优化的,⼤多数情况下还是修改应⽤代码 逻辑优化 ⽣产环境的优化 第⼆部分 ⾸先,是发现问题 API 压测 全链路压测 ⽣产环境被 ⾼峰流量打爆了
    0 码力 | 40 页 | 8.69 MB | 1 年前
    3
  • pdf文档 4 Python机器学习性能优化

    Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Free Lunch • 定位热点 & 热点加速 • 对于项⽬目开发周期:
 1. 先做出效果
 2. 确定整体pipeline
 3. 再考虑优化 • 对于⼈人⼯工智能项⽬目:迭代周期更更⻓长,更更是如此 以BERT服务为例 • BERT:
 TODO: ⼀一句句话解释
 • 横扫多项NLP任务的SOTA榜 • 惊⼈人的3亿参数 以BERT服务为例 • Self Attention机制 's=Happy birthday to [MASK].' 
 
 [“you"] 以BERT服务为例 • 我们现在上线了了这样⼀一个服务,每秒钟只能处理理10个请求 • Q: ⼤大家⼀一开始如何着⼿手优化 • Profile before Optimizing • 建⽴立闭环 2 了解你的资源 cpu/内存/io/gpu GPU为什么“快”? 计算⼒对⽐ • GFLOPS/s
 

    0 码力 | 38 页 | 2.25 MB | 1 年前
    3
  • pdf文档 IPC性能极致优化方案-RPAL落地实践

    IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar 常见的本地通信方案:回环 IP、UDS、共享内存IPC 方案诞生的背景 以性能较优的 IPC 方案 share memory ipc 为例分析性能瓶颈: 注:方案 github 地址:https://github.com/cloudwego/shmipc-go 方案诞生的背景 方案诞生的背景 IPC 的性能瓶颈有哪些: 1. 系统特权级切换; 2. 异步线程唤醒/休眠(事件通知); 异步线程唤醒/休眠(事件通知); 3. 数据拷贝(序列化/反序列化); 方案诞生的背景 能不能把库函数调用的高性能优势做到 IPC 里面,降低进程间的事件通知和数据拷贝开销? 以go-go微服务 RPC 通信场景为例,该问题可以抽象为,如何高效地在两个 go runtime 间进行函数调用? 方案诞生的背景 基于以上问题,我们最终引入了 RPAL(Run Process As Library) 方案,基于跨进程虚拟地址
    0 码力 | 39 页 | 2.98 MB | 1 年前
    3
  • pdf文档 云原生数据库PieCloudDB 性能优化之路

    郭峰 拓数派 云原生数据库PieCloudDB 性能优化之路 打造立足于国内 基础数据计算领域的世界级高科技创新驱动机构 杭州拓数派科技发展有限公司(又称“OpenPie”),以“Data Computing for New Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 PostgreSQL优化器简介 PieCloudDB优化器之分布式特性简介 PieCloudDB优化器之云原生特性简介 Q/A Contents 录 目 01 • 预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫 02 • PieCloudDB优化器拓展了PostgreSQL优化器,使其适用于分布式架构 • 引入了Motion的概念,使得数据可以在不同的工作节点之间移动 • 利用Motion产生分布式的查询计划 • 这些分布式的查询计划会被分为更小的单元,并被分发到不同的工作节点中并行执行 • 对于聚集操作,利用分布式的优势,在工作节点之间通过多阶段聚集来提升性能 # explain (costs
    0 码力 | 26 页 | 711.44 KB | 1 年前
    3
  • pdf文档 腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明

    TKE使用eBPF优化 k8s service Jianmingfan 腾讯云 目录 01 Service的现状及问题 优化的方法 02 和业界方法的比较 性能测试 03 04 解决的BUG 未来的工作 05 06 01 Service的现状及问题 什么是k8s Service • 应用通过固定的VIP访问一组pod,应用对Pod ip变化 无感知 • 本质是一个负载均衡器 控制面和数据面算法复杂度都是O(1) • 经历了二十多年的运行,比较稳定成熟 • 支持多种调度算法 优势 IPVS mode 不足之处 • 没有绕过conntrack,由此带来了性能开销 • 在k8s的实际使用中还有一些Bug 02 优化的方法 指导思路 • 用尽量少的cpu指令处理每一个报文 • 不能独占cpu • 兼顾产品的稳定性,功能足够丰富 弯路 • 为什么DPDK不行? • map • 由于eBPF中没有timer机制 IPVS 如何做SNAT? 优化方法评价 • 优势 • 大大缩短了数据通路,完全绕过了conntrack/iptables • 不足 • 对内核模块做了一定的修改,部署更困难 03 和业界方法比较 V.S. 纯粹的eBPF service 和其他的优化方法对比 V.S. Taobao IPVS SNAT patch • 复用了IPVS
    0 码力 | 27 页 | 1.19 MB | 9 月前
    3
  • pdf文档 运维上海2017-Kubernetes 在大规模场景下的service性能优化实战 - 杜军

    0 码力 | 38 页 | 3.39 MB | 1 年前
    3
  • pdf文档 Greenplum上云与优化

    张广舟(明虚) 阿里云高级专家 Greenplum上云与优化 — ApsaraDB for Greenplum介绍 2016Postgres中国用户大会 目 录 content ApsaraDB for GP的定位 ApsaraDB for GP的内核优化 未来的规划 2016Postgres中国用户大会 ApsaraDB for GP的定位 2016Postgres中国用户大会 2016Postgres中国用户大会 ApsaraDB for GP的定位 ApsaraDB for GP = 简单、高效解决大数据分析需求 MPP + 列存压缩 复杂SQL + 查询优化器 本地高效存储 +高速网络 +预置稳定资源 = = 2016Postgres中国用户大会 GP vs. RDS? Select count(*) from customer group city 列存块 ….. 列存块 列存 ≈索引 + index only 2016Postgres中国用户大会 GP vs. Hadoop? Orca优化器 SQL Runtime 本地存储 >5-30倍的性能优势 2016Postgres中国用户大会 ApsaraDB for GP vs. AWS Redshift? “有史以来卖的最好的云服务” 对比项目 ApsaraDB
    0 码力 | 26 页 | 1.13 MB | 1 年前
    3
  • pdf文档 HBase最佳实践及优化

    Postgres Conference China 2016 中国用户大会 HBase最佳实践及优化 陈飚 cb@cloudera.com Cloudera Postgres Conference China 2016 中国用户大会 关于我… 陈飚 Cloudera售前技术经理、资深方案架构师 http://biaobean.pro 原Intel Hadoop发行版核心开发人员, 成功实施并运维多 个上百节点Hadoop大数据集群。 – 曾在Intel编译器部门从事服务器中间件软件开发,擅长服务器软件调 试与优化,与团队一起开发出世界上性能领先的XSLT 语言处理器 – 2010 年后开始Hadoop 产品开发及方案顾问,先后负责Hadoop 产品 化、HBase 性能调优,以及行业解决方案顾问 2 Postgres Conference China 2016 中国用户大会 HBase的历史 分布式的多层次映射表结构(key-value形式,value有多个) – 固定一个数据模型(固定数据模型能得到高性能,同时满足应用 需求) – 无数据类型 Postgres Conference China 2016 中国用户大会 HBase的实现特性 • 非常高的数据读写速度,为写特别优化 – 高效的随机读取 – 对于数据的某一个子集能够进行有效地扫描 • 具有容错特性,能够将数据持久化的非易失性
    0 码力 | 45 页 | 4.33 MB | 1 年前
    3
  • pdf文档 VMware vSphere:优化和扩展

    培训服务介绍 VMware vSphere:优化和扩展 培训方式  讲师指导培训  实时在线培训 课程用时  为期五 (5) 天的讲师指导课堂培训  听课时间占 60%,动手实验时间占 40% 目标学员 经验丰富的系统管理员和系统集成人员 课程适用对象 ☒ 管理员 ☐ 专家 ☒ 工程师 ☒ 高级用户 ☐ 架构师 ☐ 专业人员 Server™ 5.0 讲授。 课程目标 课程结束后,您应能胜任以下工作:  配置和管理大型成熟企业的 ESXi 网络和存储系统。  管理 vSphere 环境变更。  优化所有 vSphere 组件的性能。  排除操作故障并找出造成这些故障的根本原因。  使用 VMware vSphere® ESXi™ Shell 和 VMware vSphere® Management 中约有三分之一的课程 内容将在本课程中重复出现。“VMware vSphere: Fast Track [V5]” 中的可扩展性主题也将在本课程中重复出现。 VMware vSphere:优化和扩展 VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001;
    0 码力 | 2 页 | 341.36 KB | 1 年前
    3
共 999 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
OracleMySQL性能优化感悟Go概览春晖Python机器学习IPC极致方案RPAL落地实践原生数据据库数据库PieCloudDB腾讯Kubernetes高性高性能网络技术揭秘使用eBPF增强IPVSK8s建明范建明运维上海2017大规规模大规模场景service实战杜军Greenplum上云HBase最佳VMwarevSphere扩展
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩