C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理
分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 们来点(相对)简单的作为饭后甜点吧! C++98 :令人头疼的内存管理 • 在没有智能指针的 C++ 中,我们只能手 动去 new 和 delete 指针。这非常容易出 错,一旦马虎的程序员忘记释放指针,就 会导致内存泄露等情况,更可能被黑客利 用空悬指针篡改系统内存从而盗取重要数 据等。 RAII 解决内存管理的问题: unique_ptr • 似曾相识的情形……是的,和我们刚刚提 放时。比如:指向窗口中上一次被点击的元素。 5. 初学者可以多用 shared_ptr 和 weak_ptr 的组合,更安全。 shared_ptr 管理的对象生命周期,取决于所有引用中,最长寿的那一个。 unique_ptr 管理的对象生命周期长度,取决于他所属的唯一一个引用的寿命 。 那是不是只要 shared_ptr 就行,不用 unique_ptr 了? • 可以适当使用减轻初学者的压力,因为他的行为和0 码力 | 96 页 | 16.28 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南
现代 CMake 模块化项目管理指南 彭于斌( @archibate ) 课件 & 源码: https://github.com/parallel101/course 往期录播: https://space.bilibili.com/263032155 找不到头文 件怎么办呀 CMake Cookbook 小彭老师建议 : ~~-·~·~-·~ -~·-·~·- 第一章:文件 / 关键 字。 八、每新增一个功能模块,需要创建两个文件 • 添加一个新功能模块 Carer 时,同时添加同名的源文件和头文 件。 • 头文件中的声明和源文件中的实现一一对应。 九、一个模块依赖其他模块,则应导入他的头文件 • 如果新模块( Carer )中用到了其他模块( Animal )的类或函数,则需要 在新模块( Carer )的头文件和源文件中都导入其他模块( Animal )的头 注意不论是项目自己的头文件还是外部的系统的头文件,请全部统一采用 < 项目名 / 模块名 .h> 的格式。不要用 “模块名 .h” 这种相对路径的格式,避 免模块名和系统已有头文件名冲突。 十、依赖其他模块但不解引用,则可以只前向声明不导入头文件 • 如果模块 Carer 的头文件 Carer.h 虽然引用了其他模块中的 Animal 类,但 是他里面并没有解引用 Animal ,只有源文件0 码力 | 56 页 | 6.87 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起
分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 文件越来越多时,一个个调用 g++ 编译链接会变得很麻烦。 • 于是,发明了 make 这个程序,你只需写出不同文件之间的依赖关系,和生成各文件的规则。 • > make a.out • 敲下这个命令,就可以构建出 a.out 这个可执行文件了。 • 和直接用一个脚本写出完整的构建过程相比, make 指明依赖关系的好处: 1. 当更新了 hello.cpp 时只会重新编译 hello.o ,而不需要把 main o 重复写 g++ 命令( %.o: %.cpp )。 • 但坏处也很明显: 1. make 在 Unix 类系统上是通用的,但在 Windows 则不然。 2. 需要准确地指明每个项目之间的依赖关系,有头文件时特别头疼。 3. make 的语法非常简单,不像 shell 或 python 可以做很多判断等。 4. 不同的编译器有不同的 flag 规则,为 g++ 准备的参数可能对 MSVC0 码力 | 32 页 | 11.40 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅
分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 构建目标的 cmake 项目,有病啊! 你妨碍别人作为子模块用你的项目。没错说的就是你 OpenSim ,张心欣当时浪费好多时间伺候这个沙雕库。 还要指定一个环境变量 SIMBODY_HOME 指向他的依赖项 SimBody 的源码路径,这么 dedicated 让人咋 用? 第 4 章:任务域与嵌套 https://link.springer.com/chapter/10.1007%2F978-1-4842-4398-5_12 队列里取出数据,即“认领任务”。然后执行,执行 完毕后才去认领下一个任务,从而即使每个任务 工作量不一也能自动适应。 • 这种技术又称为线程池( thread pool ),避免了 线程需要保存上下文的开销。但是需要我们管理 一个任务队列,而且要是线程安全的队列。 struct Task { int x0, y0; int nx, ny; }; std::queueq; 1 2 3 4 0 码力 | 116 页 | 15.85 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程
__device__ 或 __global__ 函数,就会出错 。 分离 __device__ 函数的声明和定义:解决 • 开启 CMAKE_CUDA_SEPARABLE_COMPILATION 选 项(设为 ON ),即可启用分离声明和定义的支持。 • 不过我还是建议把要相互调用的 __device__ 函数放在 同一个文件,这样方便编译器自动内联优化(第四课讲 过)。 两种开启方式:全局有效 API 和这个很像,但毕竟没有 CUDA 可以直接在核函数里调用核函数并指定参数这么方便…… 不过,这个功能同样需要开启 CUDA_SEPARABLE_COMPILATION 。 第 2 章:内存管理 如何从核函数里返回数据? • 我们试着把 kernel 的返回类型声明为 int ,试 图从 GPU 返回数据到 CPU 。 • 但发现这样做会在编译期出错,为什么? • 刚刚说了 kernel 循环迭代所有 1024 个元 素,实际上内部仍然是一个串行的过程,数据是强烈 依赖的( local_sum += arr[j] 可以体现出,下一时刻 的 local_sum 依赖于上一时刻的 local_sum )。 • 要消除这种依赖,可以通过右边这样的逐步缩减,这 样每个 for 循环内部都是没有数据依赖,从而是可以 并行的(对 CPU 而言是 SIMD 和指令级并行,虽 然 GPU0 码力 | 142 页 | 13.52 MB | 1 年前3GPU Resource Management On JDOS
Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态 – 用户训练完成后释放 自有模型 • 用户只需要填写模型地址即 可 GPU 监控 • 容器监控服务,自适 应 GPU 容器,可根据 容器 IP 查询记录 , 便 于用户查看服务状态 ,亦可作为 HPA 的数 据源 • 采集项 name,index,fan.speed,te mperature.gpu,pstate,po wer.draw,power.limit,me mory.used,memory.total, utilization0 码力 | 11 页 | 13.40 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串
表达式知多少 6. 通过实战案例来学习 STL 算法库 7. C++ 标准输入输出流 & 字符串格式化 8. traits 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 ASCII 码 第 1 章 计算机如何表达字符 https://zh.wikipedia.org/wiki/ASCII 计算机如何表达字符 • 众所周知,计算机只能处理二进制 不少同学就觉得这样好麻烦,其他语言都是直接 “ hello” 就是字符串类 型, C++ 还得套一层壳 string(“hello”) 才能变成安全封装的类型,才能用他 的成员函数。 • 因此, C++14 引入了一项缓解“键盘压力”的新特性: • 写 “ hello”_s 就相当于写 operator“”_s(“hello”, 5) ,就相当于 string(“hello”, 5) 了。 • 为什么还需要指定长度 find(string_view sv, size_t pos) const noexcept; • 为什么我看官方文档上没写?标准库头文件里也没看到? • 其实是有的,只不过官方为了让头文件不依赖于 头 文件,把他们写成了模板,并利用类似 SFINAE 的机制给模板参数类型的设 了一些限制(相当于把 string_view 定义为一个 concept ),所以虽然 0 码力 | 162 页 | 40.20 MB | 1 年前3新一代分布式高性能图数据库的构建 - 沈游人
的学科带头人,我国高性能计算和存储系统等方面的 泰斗和先行者。 2021 年 3 月 25 日,海致科技与清华大学计算机科学与技术系共同建设高性能图计算院士专家工作站 。 高性能图计算是高性能计算、图计算两项技术融合产生的新的技术方向,满足人们对更大规模、更复 杂数据的实时处理和存储需求,是计算机领域竞争新战略制高点。 产学结合、协同创新,打造全球领先的国产自研图数据库 AtlasGraph ,培育世界级的图计算软硬件 以终为始,以行为知,这一项目从图计算所面临的挑战出发,解决了大规模图数据所产生 的建模能力不足、结构知识难用、巨量数据难算等技术挑战,实现了大规模复杂异质图数 据的表示学习模型、语义推荐和风险管理关键技术,构建了完整的兼具理论指导与应用检 验的大规模图数据智能分析系统与平台,满足了大数据时代从复杂异质图数据中进行知识 发现的重要需求。最终获得国内外授权发明专利 43 项, CCF -A 类论文 类论文 51 篇,获得 2 次国际竞赛冠军,参与了 2 项图计算相关标准制定。 AtlasGraph 架构及实现 图技术简介 Takeway “ 世界是复杂关系的总和”—— 一张典型的知识图谱 电话 / 同通讯录 / 绑定同账户 /... Mac 地址 /IP 地址 /wifi... 亲属 / 同事 / 一致行动 人 / 担保同地址 / 同设备登 陆 /... 已签署 /0 码力 | 38 页 | 24.68 MB | 1 年前3Zadig 面向开发者的云原生 DevOps 平台
部署预发环境 xN 部署生产环境 xN 部署 / 灰度上线 xN 监控 / 告警 xN 版本归档 xN 交付追踪 xN 数据度量 xN 服务、工单管理 事件、缺陷管理 想 法 用 户 运行阶段 需求阶段 研发阶段 现代软件交付挑战:开发 5 分钟,上线 2 小时 服务一:设计 | 代码编写 | 构建 | 服务全生命周期而非只关注代码 ● 每天多次提交提早验证 Zadig 采用「云原生产品级交付」设计理念 数字化产研协同 • 环境 - 统一开发者协作平面 • 工作流 - 统一交付变更通道 • 异构支持 - 统一产研运管理平面 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig 云原生 DevOps 平台 高人效 低人效 低人效 / 低质量 / 低效率 / 高成 本: 人淹没在系统的海洋里,无数平台手工切换 研发透明化:不同项目清晰可见的效率、质量、进度 进度管理:根据团队客观数据,预测和确定项目规划 迭代进度一目了然 项目从无到有可核算 管理有数据科学依据 解放管理,更多时间花在 业务创新 平台运维 业务压力大,能力建设缓慢: • 大量工作花在工具链维护 • 项目间依赖复杂,环境管理难 • 交付版本依赖工单,发布风险高 • 公共资源 / 业务资源利用率低 赋能多业务:一个平台解决了多异构项目的管理和规范 团队高效协作0 码力 | 59 页 | 81.43 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南
这个构建系统的构 建规则。 Ninja 是一个高性能,跨平台的构建系统, Linux 、 Windows 、 MacOS 上都可 以用。 • Ninja 可以从包管理器里安装,没有包管理器的 Windows 可以用 Python 的包管理器安 装: • pip install ninja (有趣的事实: CMake 也可以通过 pip install cmake 安装……) • 事实上, MSBuild 在其他目录,因此 Windows 会找不到 dll 。 • 解决 1 :把 dll 所在位置加到你的 PATH 环境变量里去,一劳永逸。 • 解决 2 :把这个 dll ,以及这个 dll 所依赖的其他 dll ,全部拷贝到和 exe 文件同一目录 下。 手动拷贝 dll 好麻烦,能不能让 CMake 把 dll 自动生成在 exe 同一 目录? • 归根到底还是因为 CMake 把定义在顶层模块里的 /usr/lib/cmake/TBB/TBBConfig.cmake 长啥样? 不论是 TBBConfig.cmake 还是 FindTBB.cmake ,这个文件通常 由库的作者提供,在 Linux 的包管理器安装 tbb 后也会自动安装 这个文件。少部分对 CMake 不友好的第三方库,需要自己写 FindXXX.cmake 才能使用。 老年项目案例: OpenVDB (反面教材) 一些老年项目作者喜欢在项目里自己塞几个0 码力 | 166 页 | 6.54 MB | 1 年前3
共 26 条
- 1
- 2
- 3