JVM 内存模型
JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method0 码力 | 1 页 | 48.42 KB | 1 年前3Borsh 安全高效的二进制序列化
第三届中国 Rust 开发者大会 安全高效的二进制序列化 Daniel Wang @ NEAR Borsh • 运行、编码效率 • 确定性 • 跨平台兼容性 二进制序列化的问题 Binary Object Representation Serializer for Hashing • 字节级别确定性 • 执行速度快 Borsh • 轻量级 • 每一个对象与其二进制表示之间都存在一个双射映射0 码力 | 21 页 | 3.35 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理
现代 C++ 入门: RAII 内存管 理 by 彭于斌( github@archibate ) 往期录播: https://space.bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 封装:不变性 比如当我要设置数组大小为 4 时,不能只 nv = 4 还要重新分配数组内存,从而修改数组起始地址 v 常遇到:当需要修改一个成员时,其他也成员需要被修改,否则出错 这种情况出现时,就意味着你需要把成员变量的读写封装为成员函数 不变性:请勿滥用封装 • 仅当出现“修改一个成员时,其他也成员要0 码力 | 96 页 | 16.28 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串
表达式知多少 6. 通过实战案例来学习 STL 算法库 7. C++ 标准输入输出流 & 字符串格式化 8. traits 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 ASCII 码 第 1 章 计算机如何表达字符 https://zh.wikipedia.org/wiki/ASCII 计算机如何表达字符 • 众所周知,计算机只能处理二进制 有一系列成员函数,例如 find/replace/substr…… • string 可以通过 s.c_str() 重新转换回古板的 const char * 。 • string 在离开作用域时自动释放内存 (RAII) ,不用手动 free 。 C++ 字符串和 C 字符串的不同 • C 语言字符串是单独一个 char *ptr ,自动以 ‘ \0’ 结尾。 • C++ 字符串是 string 指向 ’ h’ ,只保留前三个字符 • string(“hello”, 12) 会得到 “ hello\0[ 数据删除 ]” • ↑ len 为 12 , ptr 指向 ’ h’ ,超出了 6 个字符,内存读越界(出错) • string(“hello\0world!”, 12) 会得到 “ hello\0world!” • ↑ len 为 12 , ptr 指向 ’ h’ ,字符串内可以包含 ‘ \0’0 码力 | 162 页 | 40.20 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅
入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 12 个逻辑核心。 • 似乎这里 reduce 的加速比是逻辑核心数量,而 for 的加速比是物理核心的数量? • 剧透:因为本例中 reduce 是内存密集型, for 是计算密集型。 • 超线程对 reduce 这种只用了简单的加法,瓶颈在内存的算法起了作用。 • 而本例中 for 部分用了 std::sin ,需要做大量数学运算,因此瓶颈在 ALU 。 • 这里卖个关子,欲知后事如何,请待下集揭晓! 完毕后才去认领下一个任务,从而即使每个任务 工作量不一也能自动适应。 • 这种技术又称为线程池( thread pool ),避免了 线程需要保存上下文的开销。但是需要我们管理 一个任务队列,而且要是线程安全的队列。 struct Task { int x0, y0; int nx, ny; }; std::queueq; 1 2 3 4 解决 3 :每个线程一个任务队 0 码力 | 116 页 | 15.85 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针
倍去计算的。 字还被用于表示内存地址 • 字的长度除了决定一次处理的整数大小之外,还决定了能访问的内存地址的范围。 • 这是因为内存是一维排列的,假如内存容量是 65536 字节,那所谓的内存地址实际上就 是一个从 0 到 65535 范围的整数,也就是两个字节组成的字。 • 处理器去读写内存的时候靠的是寄存器提供的地址,因此寄存器的大小(也就是字的大 小)决定了他能读写的内存大小,例如: • 由于 65536 字节( 64 KB )的内存 。 • 由于 32 位计算机的寄存器只能存储 32 位,他只能访问 4 GB 的内存。 • 由于 64 位计算机的寄存器能存储 64 位,他理论上能访问 16777216 TB 的内存! • 因此,如果你的电脑内存超过了 4 GB ,那肯定是 32 位电脑不用说了。 • 而 64 位计算机理论上能访问如此大量的内存,虽然目前看来是用不到。 知识拓展 位的整数,实际上的内存地址并没有 64 位。 • 实际上地址的高 16 位始终和第 48 位一致(符号扩展),也就是虚拟地址空间只有 48 位。 • 而经过 MMU 映射后实际给内存的地址只有 39 位,因此如今的 x64 架构实际上只能访 问 512GB 内存,如果插了超过这个大小的内存条他也不会认出来。 • 此外, 16 位计算机实际上能通过额外的段寄存器访问到 20 位的内存地址( 1MB0 码力 | 128 页 | 2.95 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程
入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 除了接受一个时间段的 sleep_for ,还有 接受一个时间点的 sleep_until ,表示让当 前线程休眠直到某个时间点。 第 1 章:线程 进程与线程 • 进程是一个应用程序被操作系统拉起来加载到内存之后从开始执行到执行结束的这样一个 过程。简单来说,进程是程序(应用程序,可执行文件)的一次执行。比如双击打开一个 桌面应用软件就是开启了一个进程。 • 线程是进程中的一个实体,是被系统独立分配和调度的基本单位。也有说,线程是 可 执行调度的最小单位。也就是说,进程本身并不能获取 CPU 时间,只有它的线程才可以。 • 从属关系:进程 > 线程。一个进程可以拥有多个线程。 • 每个线程共享同样的内存空间,开销比较小。 • 每个进程拥有独立的内存空间,因此开销更大。 • 对于高性能并行计算,更好的是多线程。 为什么需要多线程:无阻塞多任务 • 我们的程序常常需要同时处理多个任务。 • 例如:后台在执行一个很耗时的任务,比0 码力 | 79 页 | 14.11 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化
com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound • 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。0 码力 | 147 页 | 18.88 MB | 1 年前3新一代分布式高性能图数据库的构建 - 沈游人
Technology Landscape 2020 • 图数据库 • 图数据建模 • 图计算引擎 • 图数据集成 • 可视化分析 • 知识图谱解决方案 • 图查询语言 • 欺诈检测 • 网络安全分析 • 社交网络分析 • BI 工具 • 图分析工具集 • 图咨询服务 Source : Graph Aware 图数据库发展趋势 AtlasGraph 研发背景 • 业务对大图分析的诉求(千亿点、万亿边) Parallel Processing 架构,大规模集群 分布式存储及并行计 算, Shared Nothing 模式支 持存储计算分离 高性能 基于 Rust 开发的分布式存储引 擎及图计算引擎,精细的内存 管理设计,内置索引系统,支 持毫秒级的并发查询响应速度 易用 AQL(Atlas Graph Query Language) ,类 SQL 的图查询 语言,内置上百种分析函数, 面向分析师友好,拥抱标准, CRAQ 图原生存储 索引 LSM-Tree 容灾保障 ( BR ) 元数据层 事务管理 MVOCC 计算层 Cypher AST 优化器 图计算 内存加速引 擎 服务接口 HTTP/RPC Spark 连接器 Python UDF 执行器 索引管理 一致性存储 RAFT 分片管理 元数据 集群管理 用户权限 GNN 应用层0 码力 | 38 页 | 24.68 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程
入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 如果说 int & 相当于 int * ,那么 int const & 就相当于 int const * 。 • const 修饰符的存在,使得 ref 不能被写入(赋值)。 • 这样的好处是更加安全(编译器也能够放心大胆地做自动优化): 自动类型推导:定义引用( auto & ) • 当然, auto 也可以用来定义引用,只需要改成 auto & 即可: 自动类型推导:定义常引用( auto const & 可以定义常引用: 自动类型推导:函数返回引用 • 当然,函数的返回类型也可以是 auto & 或者 auto const & 。比如懒汉单例模式: 理解右值:即将消失的,不长时间存在于内存中的值 • 引用又称为左值( l-value )。左值通常对应着一个长时间存在于内 存中的变量。 • 除了左值之外,还有右值( r-value )。右值通常是一个表达式,代 表计算过程中临时0 码力 | 82 页 | 12.15 MB | 1 年前3
共 28 条
- 1
- 2
- 3