积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)前端开发(3)数据库(3)MySQL(3)综合其他(2)JavaScript(2)人工智能(2)Kubernetes(2)RocketMQ(2)后端开发(1)

语言

全部中文(简体)(15)

格式

全部PDF文档 PDF(13)PPT文档 PPT(2)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • 前端开发
  • 数据库
  • MySQL
  • 综合其他
  • JavaScript
  • 人工智能
  • Kubernetes
  • RocketMQ
  • 后端开发
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    。 舆论分析这个概念在最前沿科技或理论中的潜在应用,列出十个充满想象力和震撼性,前所未有的应用。 如果要量化研究审美智能概念,请提出一个合理的,有效的,各指标不重叠的,你自己能提取数据的指数体系框架,不少于三十 个指数。 请大家研究任何问题,先用这四个提示词进行提问。一是跨学科融合,二是深层次原理,三是概念前沿应用,四是如何量化分析。 任何学术概念。 里面会有些冗余信息,可以删除回复中 研究现状部分围绕研究主题 进一步细分为多个研究层次, 结构合理 内容结构完整,格式较一般 综述结构较为标准,在中文 文献分析上具有优势 在写作前,系统会先生成详细的写 作大纲,为文章的结构提供清晰的 框架。文本内容结构清晰,包括历 史背景、当前趋势、应用领域、挑 战与局限、未来方向。每个部分都 有详细的子标题,结构合理,层次 分明 PS:使用感受会因个体差异而有不同,仅作参考 生成综述对比:完整性与全面性 Meta成立四个专门研究小组来分析DeepSeek R1的工作 原理,并基于此改进其大模型Llama 。 • 英伟达、微软、亚马逊等国际巨头纷纷接入DeepSeek。 DeepSeek R1引发全球关注 推理能力:核心突破,专项升级  推理能力 • 强化学习驱动:DeepSeek R1-Zero 是首个完全基于强化学习(RL) 训练的推理模型,无需任何监督微调(SFT)步骤,打破传统模型依 赖大量标注数据的惯例。DeepSeek-R1
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 成的内容。 ▪ 挑战预设思维模式:通过打破任务的常规设定,促使AI生成具有挑战性和创新性的内容。 灵活运用任务开放性:给AI自由发挥的空间 创新设计策略: ▪ 设定基本框架,留出探索余地:提示语应提供一个结构化的框架,包含具体的生成目标,但不应过度限制表 达方式或细节内容,给AI足够的空间进行创造。 ▪ 多维度任务引导:通过引导AI从多个角度看待问题,激发其对生成内容的多样化思考。 AI缺陷:臆造之辞 从期望结果 开始 倒推提示语 结构 灵活调整提 示语细节 矛盾思维法:利用对立促进创新 引入对立概 念 利用矛盾性促进创新 提出冲突性任务要求 融合批判性思维与创新推理 • 质疑既有框架 • 创新推理 多方论证与批判结合, 增强生成内容的全面性 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 Ubuntu 桌面培训 2010

    /var 单独分区时是 /var 分区)没有空间 了,可是,我装的软件并不多,这是怎么回事? . . . . . . . . . . 488 XI.II.VIII我安装的是 Beta/RC 版,我可以升级到正式版吗? . . . . . . 489 XI.III 系统管理和个性化配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 IV.74 框架选定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 鼓励用户使用、改进并传播自 由和开源软件。 I.III.II Ubuntu 版本 2004年10月,Ubuntu 的第一个版本正式发布。此后 Ubuntu 每六个月发布一个新 版本,用户可以免费升级到最新版本。Ubuntu 鼓励用户及时地升级到新版本,以便 享用最新的功能和软件。 Ubuntu 的命名遵从“Y.MM (开发代号)”格式,Y 代表年 份,MM 代表月份。在括号里的名字是预发布版时确定的开发代号。 每一个普通版本都将被支持
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • pdf文档 MySQL高可用 - 多种方案

    高可用一直是 mysql 业界不断讨论的热点问题,其中涉及的东西比较多,可 供选择的方案也相当多,面对这么多的方案,我们应该如何选择适合自己公司的 mysql 高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 出适合自己公司的高可用 mysql 方案。 经常有网友问 mysql 高可用如何实现,希望得到一些能实际使用的可验证的高可用 1 适用场景 这个方案适用于只有两台数据库服务器并且还没有实现数据库的读写 分离的情况,读和写都配置 VIP。这个方案能够便于单台数据库的管理 维护以及切换工作。比如进行大表的表结构更改、数据库的升级等都是 非常方便的。 2.4.2 实战环境介绍 服务器名 IP VIP 系统 Mysql Master 10.1.1.113 10.1.1.176 Centos 5.5 64bit 高系统资源的利用率,减少 master 端的负载。应用中读数据库配置读 VIP,写数 据库配置写 VIP。这个方案也能够很方便的进行单台数据库的管理维护以及切换 工作。比如进行大表的表结构更改、数据库的升级等都是非常方便的。 3.5 方案实战 3.5.1 实战环境介绍 服务器名 IP VIP 系统 Mysql Master 10.1.1.113 10.1.1.176 10
    0 码力 | 31 页 | 874.28 KB | 1 年前
    3
  • pdf文档 2022 Apache Ozone 的最近进展和实践分享

    HIVE/IMPALA/SPARK KAFKA / FLINK 计算 OTHER WORKLOADS OTHER WORKLOADS X • 可⽤于承载实时和批处理的业务 • 扩展性提升 • ⽆需改变或改造业务应⽤代码 • 降低控制平⾯的节点数和服务依赖 业务价值 • 降低⼤规模集群的运维难度 • 可通过HDFS API和Distcp进⾏快速迁移 • 降低系统恢复时间 • 尽可能的减少NN Apache Ozone – 使⽤场景 #2 • 可以快速的对接已适配S3 接⼝的应⽤ • 减少数据在多个平台间的迁移 • 使⽤单⼀的API协议来应对混合云架构 业务价值 • 集约化的⼀套存储来⾯向不同的业务负载 • 更易于运维的控制⾯ • 只需要⼀个运维团队⽽不是多个 运维价值 OZONE STORAGE AI/ML HIVE/IMPALA/ SPARK KAFKA 对象存储语义 对象的存储Key格式 : 例如, “/vol-1/buck-1/dir1/dir2/dir3/file-1” ● LEGACY: 所有已存在的桶,升级后变成LEGACY 版本,以⽀持向后兼容 存储Key格式基本同OBS, 通过配置项区分偏向⽂件,还是偏向S3对象的⽀持 引⼊Bucket级别 OM Metadata Layout 版本号 ⽂件系统优化
    0 码力 | 35 页 | 2.57 MB | 1 年前
    3
  • pdf文档 基于go和flutter的实时通信/视频直播解决方案 段维伟

    第一部分 即将讲述的内容 • WebRTC 实时通讯 • Flutter 跨平台UI 开发框架 • 基于Flutter UI 框架的WebRTC 插件 flutter-webrtc • Go 语言的WebRTC 协议栈 pion/webrtc • 基于pion/webrtc 的应用级服务框架 pion/ion • 5G 时代, 实时通讯应用爆发 • 疫情影响,全世界都在使用远程教育,远程办公 实际开发中会遇到的困难 • 下载和编译Google WebRTC框架(防火墙,编译环境) • 原生SDK开发(每平台人力投入) • UI 的一致性,更新迭代(类似SDK需按平台维护) • 性能问题(全部使用html5) 客户端是否有 更好的选择? 为何选择 Flutter • 同样是 Google 发起的跨全平台高性能UI框架 • 基于 Skia 2D 渲染引擎 • 使用类似JS/TS的Dart 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块 • SFU 节点 (用于转发webrtc 流,与biz模块配合创建视频会议系 统) •
    0 码力 | 38 页 | 2.22 MB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    commonmq v1.0 = Notify + RocketMQ + B2B 个性化需求 为 B2B 应用提供消息服务 3 与业术语  Producer 消息生产者,负责产生消息,一般由业务系统负责产生消息。  Consumer 消息消费者,负责消费消息,一般是后台系统负责异步消费。  Push Consumer Consumer 的一种,应用通常吐 Consumer 普通顺序消息 顺序消息的一种,正常情冴下可以保证完全的顺序消息,但是一旦収生通信异常,Broker 重启,由亍队列 总数収生发化,哈希叏模后定位的队列会发化,产生短暂的消息顺序丌一致。 如果业务能容忍在集群异常情冴(如某个 Broker 宕机戒者重启)下,消息短暂的乱序,使用普通顺序方 式比较合适。  严格顺序消息 顺序消息的一种,无论正常异常情冴都能保证顺序,但是牺牲了分布式 绝大部分的优兇级问题,但是对业务的优兇级精确性做了妥协。 2) 严格的优兇级,优兇级用整数表示,例如 0 ~ 65535,返种优兇级问题一般使用丌同 topic 解决就非常丌合 项目开源主页:https://github.com/alibaba/RocketMQ 5 适。如果要让 MQ 解决此问题,会对 MQ 的性能造成非常大的影响。返里要确保一点,业务上是否确实需 要返种严格的
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    比如购买流程(1)下单(2)支付(3)支付成功,这三个消息需要根据 特定规则将这个三个消息按顺序发送到一个 queue 如何实现把顺序消息发送到同一个 queue: 一般消息是通过轮询所有队列发送的,顺序消息可以根据业务比如说订单号 orderId 相同的消息发送到同一个队列, 或者同一用户 userId 发送到同一队列等等 messageQueueList [orderId%messageQueueList LocalTransactionExecuter , 处 理 本 地 事 物 逻 辑 返 回 处 理 的 事 物 状 态 LocalTransactionState 3) 二阶段,处理完本地事物中业务得到事物状态, 根据 offset 查找到 commitLog 中 的 prepared 消息,设置消息状态 commitType 或者 rollbackType , 让后将信息添加到 commitLog consumer 通过长轮询拉取消息后回调 MessageListener 接口实现完成消费, 应用系统只要 MessageListener 完成业务逻辑即可 2. Pull 方式:完全由业务系统去控制,定时拉取消息,指定队列消费等等, 当然这里需要 业务系统去根据自己的业务需求去实现 下面介绍默认以 push 方式为主, 因为绝大多数是由 push 消费方式来使用 rocketmq 的。
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 Kubernetes Operator 实践 - MySQL容器化

    技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…) Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 权 监 控 IaaS Registry SOA服务框架 DevOps 测 试 账户 搜狗商业平台基础平台 物料 计费 管理界面 项目 管理 CI&&CD 统一配 置中心 Cluster2 Node Node Node Node 商业云平台
    0 码力 | 42 页 | 4.77 MB | 1 年前
    3
  • ppt文档 GPU Resource Management On JDOS

    用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 用户训练完成后释放 GPU 资源,提高 GPU 利用率 – Job 调度 (部门 quota 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供 tensorboard
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研清华华大大学入门精通Ubuntu桌面培训MySQL高可用ApacheOzone最近进展实践分享gocngoflutterrtcRocketMQ开发指南消息中间中间件消息中间件原理解析KubernetesOperatorGPUJDOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩