积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)数据库(4)MySQL(4)前端开发(3)综合其他(2)JavaScript(2)人工智能(2)Kubernetes(2)RocketMQ(2)系统运维(1)

语言

全部中文(简体)(16)

格式

全部PDF文档 PDF(14)PPT文档 PPT(2)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 数据库
  • MySQL
  • 前端开发
  • 综合其他
  • JavaScript
  • 人工智能
  • Kubernetes
  • RocketMQ
  • 系统运维
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 基于 KUBERNETES 的 容器器 + AI 平台

    提纲 构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 企业想要的 K8s - 单『控制集群』, 多『⽤用户集群』 • 镜像仓库 - 单『默认仓 库』,多仓库集成 管理理集群和节点 • 技术概览 • cloud provider • custom resource • ansible 管理理镜像仓库 • Cargo (内部项⽬目)- ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry 
 project CI/CD workspace Pod … resources CPU quota MEM quota Storage
    0 码力 | 19 页 | 3.55 MB | 1 年前
    3
  • pdf文档 Apache Pulsar,云原生时代的消息平台 - 翟佳

    streamnative.io Apache Pulsar 要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 • 多租户隔离 — 百万Topics — 跨地域复制 — 鉴权认证 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的⽣态和社区 • Pulsar 的根本不同 org/en/powered-by/ StreamNative 和 Pulsar Summit StreamNative 和 Pulsar Summit streamnative.io 社区资源 • 微信公众号: • ApachePulsar / StreamNative • B站:https://space.bilibili.com/391380821 • 邮件列表 • dev@pulsar
    0 码力 | 39 页 | 12.71 MB | 6 月前
    0.03
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容;
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 3. 角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    (4). 机器掉电,但是能立即恢复供电情冴。 (5). 机器无法开机(可能是 cpu、主板、内存等关键设备损坏) (6). 磁盘设备损坏。 (1)、(2)、(3)、(4)四种情冴都属亍硬件资源可立即恢复情冴,RocketMQ 在返四种情冴下能保证消息丌丢,戒 者丢失少量数据(依赖刷盘方式是同步迓是异步)。 (5)、(6)属亍单点故障,丏无法恢复,一旦収生,在此单点上的消息全部丢失。RocketMQ 消费消息过程,使用了零拷贝,零拷贝包含以下两种方式 1. 使用 mmap + write 方式 优点:即使频繁调用,使用小块文件传输,效率也很高 缺点:丌能很好的利用 DMA 方式,会比 sendfile 多消耗 CPU,内存安全性控制复杂,需要避免 JVM Crash 问题。 2. 使用 sendfile 方式 优点:可以利用 DMA 方式,消耗 CPU 较少,大块文件传输效率高,无内存安全新问题。 com/alibaba/RocketMQ 29 1. 使用 CPU 资源来换叏网卡流量资源 2. FilterServer 不 Broker 部署在同一台机器,数据通过本地回环通信,丌走网卡 3. 一台 Broker 部署多个 FilterServer,充分利用 CPU 资源,因为单个 Jvm 难以全面利用高配的物理机 Cpu 资源 4. 因为过滤代码使用 Java 诧言来编写,应用几乎
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 Ubuntu 桌面培训 2010

    进行简单的文本处理和使用电子表格 • 如何安装和运行游戏 • 如何添加、删除和更新应用程序 • 如何查看、绘制、处理和扫描图像 • 如何播放、编辑和管理您的音乐和视频文件 • 如何从免费的或商业的资源中获取关于 Ubuntu 的帮助 • 如何创建分区和使用双启动选项 目标对象和前提要求 本课程为家庭用户和办公室用户提供 Ubuntu 操作系统的培训。目标对象不必预先了 解 Ubuntu,但 iPod 创建和编辑音频文件 播放 DVD 播放在线媒体 编辑视频 本课小结 复习题 上机练习 表 8 第 二 天 - 第 8 章 Ubuntu 帮助和支持 60 简介 免费的支持资源 系统文档 在线文档 社区支持 Launchpad Fridge 新闻站 购买商业服务 本课小结 复习题 表 9 第 二 天 - 第 9 章 课程概况 33 Ubuntu 桌面培训 的概念。他是很多 Copyleft 许可证的主要作者,包括使用最广泛的自由软件许可证—— GNU 通用公共 许可证(GNU General Public License, GPL)。 小提示 更 多 关 于 Richard Stallman 和 GNU 项 目 的 内 容 , 请 访 问:http://en.wikipedia.org/wiki/Richard_stallman Copyleft
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • pdf文档 Kubernetes Operator 实践 - MySQL容器化

    等相关领域,负责搜狗商业云 平台的设计研发工作 刘林 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 搜狗商业平台 技术体系广 服务多迭代快 搜狗产品矩阵 商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ 物料 计费 管理界面 项目 管理 CI&&CD 统一配 置中心 Cluster2 Node Node Node Node 商业云平台 BizCloud • 弹性伸缩能力不足 • 机器资源利用率不高 • 服务管理复杂 问题 有状态服务的需求越来越多 有状态服务容器化 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. controller Operator 是什么 • Kubernetes 中一切都可视为资源 • 默认资源类型:如 Pod、Service、Volume 等 • Kubernetes 1.7 之后增加了 CRD 自定义资源 • 二次开发扩展 Kubernetes API CRD 的基本原理 ① 观察资源的当前状态 ② 分析当前状态与期望状态的差别 ③ 调用 API 消除差别 TestCluster
    0 码力 | 42 页 | 4.77 MB | 1 年前
    3
  • pdf文档 MySQL高可用 - 多种方案

    chinaunix.net/uid/20639775.html 1 前言 Mysql 高可用一直是 mysql 业界不断讨论的热点问题,其中涉及的东西比较多,可 供选择的方案也相当多,面对这么多的方案,我们应该如何选择适合自己公司的 mysql 高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 这个方案适用于只有两台数据库服务器(后端有多个从服务器也是可以的, 只是要手工切换从服务器比较麻烦,后面会介绍的 MMM 能将从服务器自动切 换)并且还能实现数据库的读写分离的情况,这样 backup 机器也能用起来,提 高系统资源的利用率,减少 master 端的负载。应用中读数据库配置读 VIP,写数 据库配置写 VIP。这个方案也能够很方便的进行单台数据库的管理维护以及切换 工作。比如进行大表的表结构更改、数据库的升级等都是非常方便的。 dbserver 10.1.1.75 puppet  Authkerys 的配置 这个文件用来配置密码认证方式,支持3种认证方式,crc,md5和sha1, 从左到右安全性越来越高,消耗的资源也越多。因此如果 heartbeat 运行在安全的网路之上,比如私网,那么可以将验证方式设置成 crc, master 和 backup 的 authkeys 配置一样。我的 authkeys 文件配置如下:
    0 码力 | 31 页 | 874.28 KB | 1 年前
    3
  • pdf文档 基于go和flutter的实时通信/视频直播解决方案 段维伟

    iOS/Android/Web/Windows/Linux/macOS/Embedded 使用flutter 开发app意味着什么? • 无需为每个平台独立维护代码 • 一次编码,多平台运行,效率最大化 • 多平台一致性体验 • 强大的社区资源 Flutter-WebRTC 插件 Flutter-WebRTC 支持那些平台 实现一对一视频通话服务 (基于 Go 开发) 源码: https://github 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块 • SFU 节点 (用于转发webrtc 流,与biz模块配合创建视频会议系 统) •
    0 码力 | 38 页 | 2.22 MB | 1 年前
    3
  • pdf文档 MySQL 8.0.17 调优指南(openEuler 20.09)

    对性能进行分析时,要多方面分析系统的资源瓶颈所在,因为系统某一方面性能 低,也许并不是它自己造成的,而是其他方面造成的。如CPU利用率是100%时, 很可能是内存容量太小,因为CPU忙于处理内存调度。 ● 一次只对影响性能的某方面的一个参数进行调整,多个参数同时调整的话,很难 界定性能的影响是由哪个参数造成的。 ● 由于在进行系统性能分析时,性能分析工具本身会占用一定的系统资源,如CPU 资源、内存资源等等。我们必须 资源、内存资源等等。我们必须注意到这点,即分析工具本身运行可能会导致系 统某方面的资源瓶颈情况更加严重。 MySQL 8.0.17 调优指南(openEuler 20.09) 1 调优概述 2020-10-15 1 ● 必须保证调优后的程序运行正确。 ● 调优过程是迭代渐进的过程,每一次调优的结果都要反馈到后续的代码开发中 去。 ● 性能调优不能以牺牲代码的可读性和可维护性为代价。 1.3 调优思路 性能优化首
    0 码力 | 11 页 | 223.31 KB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
KUBERNETESApachePulsar清华大学DeepSeekDeepResearch科研清华华大大学入门精通RocketMQ开发指南Ubuntu桌面培训KubernetesOperatorMySQL高可用gocngoflutterrtc8.017调优openEuler20.09
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩