积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(5)MySQL(5)云计算&大数据(4)综合其他(2)人工智能(2)RocketMQ(2)后端开发(1)系统运维(1)Linux(1)Kubernetes(1)

语言

全部中文(简体)(13)

格式

全部PDF文档 PDF(12)PPT文档 PPT(1)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 13 个.
  • 全部
  • 数据库
  • MySQL
  • 云计算&大数据
  • 综合其他
  • 人工智能
  • RocketMQ
  • 后端开发
  • 系统运维
  • Linux
  • Kubernetes
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Ubuntu 桌面培训 2010

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 内容设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 软件仓库分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 VI.X 添加新语言设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 VI . 475 X.III.II 更改引导时的默认操作系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 X.III.III 配置启动应用程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 X.IV 本课小结 . . .
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    broker1, broker2, borker3 三台 broker 机器都配置了 Topic_A Broker1 的队列为 queue0 , queue1 Broker2 的队列为 queue0, queue2, queue3, Broker3 的队列为 queue0 当然一般情况下的 broker 的配置都是一样的 以上当 broker 启动的时候注册到 namesrv 的 Topic_A 的 事 物 状 态 LocalTransactionState 3) 二阶段,处理完本地事物中业务得到事物状态, 根据 offset 查找到 commitLog 中 的 prepared 消息,设置消息状态 commitType 或者 rollbackType , 让后将信息添加到 commitLog 中, 其实二阶段生成了两条消息 排好序类似于记录 将所有消费端 consumer 排好序,相当于页数 然后获取当前 consumer 所在页面应该分配到的 queue 2) 按照配置来分配队列, 也就是说在 consumer 启动的时候指定了 queue 3) 按照机房来配置队列 Consumer 启动的时候会指定在哪些机房的消息 获取指定机房的 queue 然后在执行如 1)平均算法 根据分配队列的结果更新
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    . 32 11.2.2 客户端的公共配置 ................................................................................................................................. 32 11.2.3 Producer 配置 ..................... 11.2.4 PushConsumer 配置 ............................................................................................................................... 33 11.2.5 PullConsumer 配置 .................... ................................................................................ 35 12.1 Broker 配置参数 ................................................................................................
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 MySQL高可用 - 多种方案

    .................... 4 2.4.3 Mysql 的安装和配置 ........................................................................................ 4 2.4.4 Mysql 的主主同步配置 ......................................... ....... 5 2.4.7 Keepalived 的配置 .......................................................................................... 5 2.4.8 Master 和 backup 的 realserver 的配置 ............................... ................... 10 3.5.2 Mysql 的安装和配置 ...................................................................................... 10 3.5.3 Mysql 的主主同步配置 ..........................................
    0 码力 | 31 页 | 874.28 KB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    比如,订单处理流程,那么对读需要强一致性,实时写实 时读,类似种涉及交易的或者动态实时报表统计的都要采 用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 系统优化 系统优化  配置合理的 配置合理的 MySQL MySQL 服务器,尽量在应用本身达到一 服务器,尽量在应用本身达到一 个 个 MySQL MySQL 最合理的使用 最合理的使用  针对 针对 MyISAM MyISAM 或 或 InnoDB InnoDB 不同引擎进行不同定制 不同引擎进行不同定制 性配置 性配置  针对不同的应用情况进行合理配置 针对不同的应用情况进行合理配置 针对不同的应用情况进行合理配置  针对 针对 my.cnf my.cnf 进行配置,后面设置是针对内存为 进行配置,后面设置是针对内存为 16G 16G 的服务器进行的合理设置 的服务器进行的合理设置 服务优化 服务优化 MySQL MySQL 配置原则 配置原则 服务优化 服务优化 公共选项 公共选项 选项 缺省值 推荐值 说明 max_connections 100 1024 MySQL
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • pdf文档 MySQL 8.0.17 调优指南(openEuler 20.09)

    .......................................................................................3 2.1 BIOS 配置................................................................................................... 一般指的是Windows、UNIX、Linux等操作系统。例如,在进行性 能测试,出现物理内存不足时,虚拟内存设置也不合理,虚拟内 存的交换效率就会大大降低,从而导致行为的响应时间大大增 加,这时认为操作系统上出现性能瓶颈。 数据库 一般指的是数据库配置等方面的问题。例如,由于参数配置不合 理,导致数据库处理速度慢的问题,可认为是数据库层面的的问 题。 MySQL 8.0.17 调优指南(openEuler 调优指南(openEuler 20.09) 1 调优概述 2020-10-15 2 2 硬件调优 2.1 BIOS配置 2.1 BIOS 配置 目的 对于不同的硬件设备,通过在BIOS中设置一些高级选项,可以有效提升服务器性能。 方法 步骤1 关闭SMMU。 说明 此优化项只在非虚拟化场景使用,在虚拟化场景,则开启SMMU。 1. 重启服务器过程中,单击Delete键进入BIOS,选择“Advanced
    0 码力 | 11 页 | 223.31 KB | 1 年前
    3
  • pdf文档 强大的音视频处理工具: FFmpeg

    Script Info: 脚本的⼀般全局信息: Title:标题 Original Script:脚本原作 Script Updated By:脚本优化 Script Type:类型 ⽤于兼容性设置 SSA=4.00 ASS=4.00+ PlayResX & PlayResY:屏幕宽⾼ PlayDepth:决定颜⾊数量 Timer:定时器 V4 Styles: 定义⽂字样式,在events部分可以直接调⽤ 当前脚本 中的,⽐如默认有个:Default 的 样式 获取 44 就出来字幕预览了: 参数解释: 半透明效果 先勾选 边框-》不透明效果 再去:颜⾊-》 点击:边框 或 阴影,弹出设置框,改动你要的颜 ⾊,尤其是调整 透明度 从左边的 样式库 中 默认的样式:Default,选中,点击下⾯的 复制到当 前脚本 获取 45 然后再去放⼤,即可以看到效果了: 继续编辑字幕 rt,在⽤ffmpeg从srt转换出ass 字幕 获取 47 编辑字幕 ⽤Aegisub编辑字幕,,调整出我要的效果后,另存为保存出的ass⽂件 把其配置: 换进来即可 输出=编辑后 核⼼配置 就⼀句: 起到了配置字幕属性,实现了效果: 字体:PingFang SC 字体⼤⼩:20 字幕的背景半透明效果:后⾯很多参数组合的效果 [[Script Info Script
    0 码力 | 73 页 | 11.57 MB | 1 年前
    3
  • pdf文档 2022 Apache Ozone 的最近进展和实践分享

    “/vol-1/buck-1/dir1/dir2/dir3/file-1” ● LEGACY: 所有已存在的桶,升级后变成LEGACY 版本,以⽀持向后兼容 存储Key格式基本同OBS, 通过配置项区分偏向⽂件,还是偏向S3对象的⽀持 引⼊Bucket级别 OM Metadata Layout 版本号 ⽂件系统优化 ⽂件系统优化效果 Query Details: Dropped “catelog_sales” C4 C5 C6 DN2 DN3 DN4 C2 C4 C6 C5 发送命令 & 查询结果 发送命令 汇报⼼跳 均衡器Ozone Balancer 主要配置项 • 启动服务 • 停⽌服务 • Threshold配置 • 最多连续迭代运⾏次数 • 每次迭代最⼤迁移数据量 Average使⽤率 DN1 DN2 DN3 DN4 + threshold - threshold 纠删码策略 • 内建⽀持的策略 • RS-3-2-1024K • RS-6-3-1024K • XOR-2-1-1024K • 可定制新的策略 • 策略设置⽀持 • 全局策略设置 • 桶级别策略设置 • 对象/⽂件级别策略设置 数据写⼊ DN5 C-1 C-2 B-1-p B-2-p DN1 C-1 C-2 B-1-d B-2-d DN2 C-1 C-2 B-1-d
    0 码力 | 35 页 | 2.57 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; ② 预测2025 策略二:适当分解复杂任务,降低AI认知负荷 策略三:引入引导性问题,提升生成内容的深度 策略四:控制提示语长度,确保生成的准确性 策略五:灵活运用开放式提示与封闭式提示 分解任务的技巧:分段生成、逐层深入、设置逻 辑结构 引导性问题的设计要点:设置多个层次的问题、 促使AI对比或论证、引导思维的多样性 控制提示语长度的技巧:避免嵌套复杂的指令、 保持简洁性、使用分步提示 开放式提示:提出开放性问题,允许AI根据多个 TFM借鉴了认知语言学中的“原型理论”和“框架语义 学”,可开发以下技巧: �TFM实施步骤: 1. 定义主题原型:列出主题的关键特征和代表性例子 2. 构建语义框架:创建与主题相关的概念图 3. 设置重点梯度:按重要性排序相关概念和子主题 4. 创建主题引导符:设计特定的关键词或短语来保持 主题聚焦 应用示例 1. 主题原型 • 关键特征:全球变暖、极端天气、海平面上升、生态系统变化
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    述生成,操作路径清晰,交互体验流畅高效。  模块分区:将功能模块与信息展示分区设计布 局,用户可以轻松找到所需功能,提高了操作 的便捷性和效率。  多语言支持与定制化设置:语言支持对于国内 研究者更为友好,能够适应综述撰写的国内外 研究需求,同时定制化设置满足用户在个性化 需求下的使用。 元知AI综述工具  界面直观:平台设计简洁、直观, 使用户能够快捷地进行文献数据 的检索、选取和综述生成,操作 路径清晰,交互体验流畅高效。 输。例如,其蒸馏模型在端侧SoC(系统级芯片)上的表现,显 著降低了硬件门槛,同时提升了用户体验。 DeepSeek的本地部署在性能上表现出色,能够满足不同应用场景的需求,尤其是在端侧和端云协同场景。通过合理的 硬件配置和优化策略,DeepSeek可以在本地环境中高效运行,为用户提供强大的AI支持。 DeepSeek 在端侧部署中展现出较强的适应性和灵活性。 模型轻量化 DeepSeek通过蒸馏技术优化小模 DeepSeek-V3。未来, DeepSeek计划探索如何利用长推理链 来增强在这些任务的表现。 优化提示工程 目前模型对提示较为敏感,少样本提示会持续降 低其性能。因此,建议用户使用零样本设置,直 接描述问题并指定输出格式,以获得最佳效果。 软件工程任务 DeepSeek-R1 在软件工程基准测试中的表现未能 显著超越 DeepSeek-V3。未来版本将通过在软件 工程数据上实施拒绝采样或在强化学习过程中引入
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
Ubuntu桌面培训消息中间中间件消息中间件RocketMQ原理解析开发指南MySQL高可用8.017调优openEuler20.09mediaprocessffmpegApacheOzone最近进展实践分享清华华大大学清华大学DeepSeek入门精通DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩