Hadoop 迁移到阿里云MaxCompute 技术方案
...................................................................................... 22 6.3.2 资源评估 ................................................................................................ 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 云计算技术的发展和普及,越来越多的企业客户选择数据上云,在云上构建数据仓库。以云数 仓、云计算为核心的企业服务架构成为新一代大数据建站的主流趋势。MaxCompute 作为云数 仓、云计算的核心引擎,承载了越来越多企业客户的数据业务和数据资产,免运维、低成本、高 度安全和稳定性,让客户的资源更加聚焦在业务开发上,加速业务发展。 等支持 BI 工具 访问,利用 Hbase 实现低延迟的在线服务等 分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。 数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地 执行以实现数据处理工作的自动化。如 Apache Oozie、Sqoop 等。 2.1.2 开源大数据组件架构 Alibaba Cloud0 码力 | 59 页 | 4.33 MB | 1 年前3Curve核心组件之mds – 网易数帆
故障域的隔离:比如副本的放置分布在不同机器,不同机架,或是不同的交换机下面。 2. 隔离和共享:不同用户的数据可以实现固定物理资源的隔离和共享。 • pool: 用于实现对机器资源进行物理隔离,server不能跨 Pool交互。运维上,建议以pool为单元进行物理资源的扩 容。 • zone: 故障隔离的基本单元,一般来说属于不同zone的机 器至少是部署在不同的机架,一个server必须归属于一个 果在Chunk到复制组之间引入一个CopySet,每个Chunk可以用ChunkID+CopySetID=12个byte。 2. 减少复制组数量:如果一个数据节点存在 256K个复制组,复制组的内存资源占用将会非常恐怖;复制组之 间的通信将会非常复杂,例如复制组内Primary给Secondary定期发送心跳进行探活,在256K个复制组的情况 下,心跳的流量将会非常大;而引入CopySet的概 存储系统的核心问题,也是 curve 是否能上生产环境的决定因素之一。 • 自动容错保证常见异常(如坏盘、机器宕机)导致的数据丢失不依赖人工处理,可 以自动修复。 • 负载均衡和资源均衡保证集群中的磁盘、cpu、内存等资源的利用率最大化。SCHEDULE Schdedule的具体实现 Coordinator: 调度模块的对外接口。心跳会将 chunkserver上报上来的copyset信息提交给0 码力 | 23 页 | 1.74 MB | 5 月前3
共 2 条
- 1