Java 应用与开发 - Java 内存模型与分配机制
Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 JVM 内存溢出和参数调优 当遇到 OutOfMemoryError 时该如何做? ▶ 常见的 OOM(Out Of Memory)内存溢出异常,就是堆内 存空间不足以存放新对象实例时导致。 ▶ 永久区内存溢出相对少见,一般是由于需要加载海量的 Class 数据,超过了非堆内存的容量导致。 ▶ 栈内存也会溢出,但是更加少见。 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 JVM 内存溢出和参数调优 当遇到 OutOfMemoryError 时该如何做? ▶ 常见的 OOM(Out Of Memory)内存溢出异常,就是堆内 存空间不足以存放新对象实例时导致。 ▶ 永久区内存溢出相对少见,一般是由于需要加载海量的 Class 数据,超过了非堆内存的容量导致。 ▶ 栈内存也会溢出,但是更加少见。 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 JVM 内存溢出和参数调优 当遇到 OutOfMemoryError 时该如何做? ▶ 常见的 OOM(Out Of Memory)内存溢出异常,就是堆内 存空间不足以存放新对象实例时导致。 ▶ 永久区内存溢出相对少见,一般是由于需要加载海量的 Class 数据,超过了非堆内存的容量导致。 ▶ 栈内存也会溢出,但是更加少见。0 码力 | 44 页 | 818.30 KB | 1 年前3JVM 内存模型
0 码力 | 1 页 | 48.42 KB | 1 年前3AI大模型千问 qwen 中文文档
Qwen Team 2024 年 05 月 11 日 快速开始 1 文档 3 i ii Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") # Instead of using model.chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs0 码力 | 56 页 | 835.78 KB | 1 年前3Blender v4.1 Manual
application, Blender runs on Linux, macOS, as well as Windows systems. It also has relatively small memory and drive requirements compared to other 3D creation suites. Its interface uses OpenGL to provide 3D modeling and animation tools within the reach of the general computing public. NaN’s business model involved providing commercial products and services around Blender. In 1999 NaN attended its first player than the default one. Lock Interface Lock interface during rendering in favor of giving more memory to the renderer. Window Menu New Window Create a new window by copying the current window. New0 码力 | 6263 页 | 303.71 MB | 1 年前3ThinkJS 1.2 中文文档
└── IndexController.js -‐-‐-‐-‐ 逻辑控制类 │ │ └── Model -‐-‐-‐-‐ 模型类 │ ├── Runtime 数据库基类 lib/Lib/Core/Dispatcher.js 路由分发类 lib/Lib/Core/Http.js 封装的 http 对象类 lib/Lib/Core/Model.js 模型基类 lib/Lib/Core/Think.js 框架类 lib/Lib/Core/View.js 视图类 lib/Lib/Util/Behavior.js ,初始化模版引擎 // 调⽤用这些⽂文件时会⾃自动到对应的⼀一些⺫⽬目录下查找 var db = thinkRequire("mssqlDb"); var model = thinkRequire("userModel"); var behavior = thinkRequire("AgentBehavior"); JavaScript0 码力 | 104 页 | 1.29 MB | 1 年前3openEuler 21.03 技术白皮书
kernel 5.10 but also incorporated multiple new features such as live kernel upgrade and tiered memory expansion. These highlights improve multi-core performance and deliver thousand-core computing effort into advancing the ARM64 architecture, Advanced Configuration and Power Interface (ACPI), memory management, file systems, media, kernel documents, bug fixes, and code rebuild. Over the past decade kernel 5.10: In-depth optimizations for scheduling, I/O, and memory management • Tiered memory expansion etMem: unified management of various memory and storage media, and smooth expansion of system capacity0 码力 | 21 页 | 948.66 KB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程 15.3 宝可梦数据集实战 15.4 迁移学习 15.5 Saved_model 15.6 模型部署 15.7 参考文献 预览版202112 人工智能绪论 我们需要的是一台可以从经验中学习的机器。 −阿兰·图灵 1.1 容器可以非常方便地搭建多层的网络。对于 3 层网络,我们可以通过快速 完成 3 层网络的搭建。 # 利用 Sequential 容器封装 3 个网络层,前网络层的输出默认作为下一层的输入 model = nn.Sequential( # 创建第一层,输入为 784,输出为 256 nn.Linear(28*28, 256), nn.ReLU(), # 激活函数 ) 第 1 层的输出节点数设计为 256,第 2 层设计为 128,输出层节点数设计为 10。直接调用 这个模型对象 model(x)就可以返回模型最后一层的输出?。 3.8.2 模型训练 搭建完成 3 层神经网络的对象后,给定输入?,调用 model(?)得到模型输出?后,通过 F.mse_loss 损失函数计算当前的误差ℒ: # 创建优化器,并传递需要优化的参数列表:[w10 码力 | 439 页 | 29.91 MB | 1 年前3openEuler 21.09 技术白皮书
kernel 5.10 and also incorporates multiple new features, such as live kernel upgrade and tiered memory expansion. These features improve multi-core performance and deliver the computing power of one responsible for enhancing the processor architectures, Advanced Configuration and Power Interface (ACPI), memory management, file systems, media, kernel documents, bug fixes, and code rebuilds. Over the past and jitter suppression for online services. Additionally, its innovative memory reclamation algorithm against out of memory (OOM) allows online services to run reliably based on their higher service0 码力 | 36 页 | 3.40 MB | 1 年前3Kotlin 1.9.10 官方文档 中文版
Kotlin/Native Among other improvements, this release brings further advancements to the Kotlin/Native memory manager that should enhance its robustness and performance: 自定义内存分配器预览版 主线程上的 Objective-C 或 Swift Kotlin 1.9.0 introduces the preview of a custom memory allocator. Its allocation system improves the runtime performance of the Kotlin/Native memory manager. The current object allocation system in lacks memory locality and often results in scattered memory access patterns, leading to potential performance issues. Linked lists require additional memory for each object, increasing memory usage0 码力 | 3753 页 | 29.69 MB | 1 年前3Kotlin 官方文档中文版 v1.9
Kotlin/Native Among other improvements, this release brings further advancements to the Kotlin/Native memory manager that should enhance its robustness and performance: 自定义内存分配器预览版 主线程上的 Objective-C 或 Swift Kotlin 1.9.0 introduces the preview of a custom memory allocator. Its allocation system improves the runtime performance of the Kotlin/Native memory manager. The current object allocation system in lacks memory locality and often results in scattered memory access patterns, leading to potential performance issues. Linked lists require additional memory for each object, increasing memory usage,0 码力 | 2049 页 | 45.06 MB | 1 年前3
共 728 条
- 1
- 2
- 3
- 4
- 5
- 6
- 73