Go on GPU
Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Go on GPU Changkun Ou changkun.de/s/gogpu GopherChina 2023 Session “Foundational Toolchains” 2023 June 10 1 Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Agenda ● Basic knowledge for interacting with GPUs ● Accelerate Go programs using GPUs ● Challenges in Go when using outlooks 2 Changkun Ou. 2023. Go on GPU. GopherChina 2023. Session "Foundational Toolchains" Agenda ● Basic knowledge for interacting with GPUs ○ Motivation ○ GPU Driver and Standards ○ Render and0 码力 | 57 页 | 4.62 MB | 1 年前3GPU Resource Management On JDOS
GPU Resource Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态 作为训练监控实时查看训练状态 – 用户训练完成后释放 GPU 资源,提高 GPU 利用率 – Job 调度 (部门 quota 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供0 码力 | 11 页 | 13.40 MB | 1 年前3Bridging the Gap: Writing Portable Programs for CPU and GPU
1/66Bridging the Gap: Writing Portable Programs for CPU and GPU using CUDA Thomas Mejstrik Sebastian Woblistin 2/66Content 1 Motivation Audience etc.. Cuda crash course Quiz time 2 Patterns Oldschool Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Algorithms are designed differently Latency/Throughput Memory bandwidth Number of cores Motivation Patterns The dark path Cuda proposal Thank you Why write programs for CPU and GPU Difference CPU/GPU Why it makes sense? Library/Framework developers Embarrassingly parallel algorithms User0 码力 | 124 页 | 4.10 MB | 5 月前3FFmpeg在Intel GPU上的硬件加速与优化
FFmpeg在Intel GPU上的 硬件加速与优化 赵军 DCG/NPG @ Intel 介绍FFmpeg VAAPI • Media pipeline review • 何谓FFmpeg VAAPI • 为什么我们需要FFmpeg VAAPI • 当前状态 • 更进一步的计划 • 附录 典型的 media pipeline File Device Network Stream radeon, nouveau (?), freedreno, … • 废弃的 API bridges • vdpau—va bridge • powervr—va bridge • … Intel GPU简介 • Gfx Label • Gen3: Pinetrail (Pineview) • Gen4: G965 • Gen5: G4X, Ironlake (Piketon, Calpella) Kabylake • … • Intel® Processor Graphics • 3D 渲染(OpenGL & Vulkan) • Media • 显示与计算(CUDA & OpenCL) Intel GPU media 硬件编程模型 slice Ring buffer FFmpeg MSDK i965/iHD OS scheduler com1 KMD com2 com3 Batch0 码力 | 26 页 | 964.83 KB | 1 年前3激活函数与GPU加速
激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程
CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 做不到的。 编写一段在 GPU 上运行的代码 • 定义函数 kernel ,前面加上 __global__ 修 饰符,即可让他在 GPU 上执行。 • 不过调用 kernel 时,不能直接 kernel() ,而 是要用 kernel<<<1, 1>>>() 这样的三重尖括 号语法。为什么?这里面的两个 1 有什么用 ?稍后会说明。 • 运行以后,就会在 GPU 上执行 printf 了。 kernel 函数在 GPU 上执行,称为核 函数,用 __global__ 修饰的就是核函数。 没有反应?同步一下! • 然而如果直接编译运行刚刚那段代码,是不会打印出 Hello, world! 的。 • 这是因为 GPU 和 CPU 之间的通信,为了高效,是异 步的。也就是 CPU 调用 kernel<<<1, 1>>>() 后,并不 会立即在 GPU 上执行完毕,再返回。实际上只是把0 码力 | 142 页 | 13.52 MB | 1 年前3PyTorch Release Notes
Deep Learning SDK accelerates widely-used deep learning frameworks such as PyTorch. PyTorch is a GPU-accelerated tensor computational framework with a Python front end. Functionality can be easily extended standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in a static graph, see Preparing to use NVIDIA Containers Getting Started Guide. ‣ For non-DGX users, see NVIDIA ® GPU Cloud ™ (NGC) container registry installation documentation based on your platform. ‣ Ensure that0 码力 | 365 页 | 2.94 MB | 1 年前3POCOAS in C++: A Portable Abstraction for Distributed Data Structures
CPU vFast GPU vvFast PCI Bus (or other fabric)GPUs as a First-Class Computing Resource CPU GPU PCI Bus (or other fabric) NIC - Historically, network comm. was CPU-centric 1) Direct GPU access to Infiniband allows GPU-to-GPU network transfers 2) Fast in-node fabrics like NVLink, Infinity Fabric allow very fast intra-node transfers DataGPUs as a First-Class Computing Resource CPU GPU PCI Bus (or fabric) NIC Data - Historically, network comm. was CPU-centric 1) Direct GPU access to Infiniband allows GPU-to-GPU network transfers 2) Fast in-node fabrics like NVLink, Infinity Fabric allow0 码力 | 128 页 | 2.03 MB | 5 月前3动手学深度学习 v2.0
208 5.5.2 加载和保存模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 5.6 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 . . . . . . . . . . . . . . . . . 212 5.6.2 张量与GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.6.3 神经网络与GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 12.3.1 基于GPU的并行计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 12.3.2 并行计算与通信 . .0 码力 | 797 页 | 29.45 MB | 1 年前3Taro: Task graph-based Asynchronous Programming Using C++ Coroutine
B" : GPU operation 9Existing TGPSs on Heterogenous Computing - Challenge A C D B! B" 5 task_b = sched.emplace([](&){ 6 // CPU code; // GPU code; 7 }); // CPU thread blocks until GPU finishes B" : GPU operation 10Existing TGPSs on Heterogenous Computing - Challenge A C D B! B" 5 task_b = sched.emplace([](&){ 6 // CPU code; // GPU code; 7 }); // CPU thread blocks until GPU finishes operation B" : GPU operation Atomic execution per task 11Existing TGPSs on Heterogenous Computing - Challenge CPU A B! C Idle GPU D B" Runtime A C D B! B" Assume one CPU and one GPU B! : CPU operation0 码力 | 84 页 | 8.82 MB | 5 月前3
共 540 条
- 1
- 2
- 3
- 4
- 5
- 6
- 54