积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(127)Julia(87)综合其他(47)云计算&大数据(43)数据库(35)PostgreSQL(34)Blender(33)Pandas(29)nim(28)机器学习(14)

语言

全部英语(201)中文(简体)(28)中文(繁体)(20)日语(1)韩语(1)英语(1)

格式

全部PDF文档 PDF(243)其他文档 其他(9)DOC文档 DOC(1)
 
本次搜索耗时 0.164 秒,为您找到相关结果约 253 个.
  • 全部
  • 后端开发
  • Julia
  • 综合其他
  • 云计算&大数据
  • 数据库
  • PostgreSQL
  • Blender
  • Pandas
  • nim
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 韩语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Lecture Notes on Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li fli@sdu.edu.cn Shandong University, China 1 Bayes’ Theorem and Inference Bayes’ theorem is stated mathematically characterize the relationship through parameters θ = {P(X = x | Y = y), P(Y = y)}x,y. 2 Gaussian Discriminant Analysis In Gaussian Discriminate Analysis (GDA) model, we have the following as- sumptions: • A1: | Y = 0 ∼ N(µ0, Σ): The conditional probability of continuous random variable X given Y = 0 is a Gaussian distribution parameterized by µ0 and Σ, such that the corresponding probability density function
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Lecture 5: Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li Shandong University fli@sdu.edu.cn September 27, 2023 Feng Li (SDU) GDA, NB and EM September 27, 2023 1 / 122 Outline Outline 1 Probability Theory Review 2 A Warm-Up Case 3 Gaussian Discriminate Analysis 4 Naive Bayes 5 Expectation-Maximization (EM) Algorithm Feng Li (SDU) GDA, NB and EM September 27, 2023 2 / 122 2023 37 / 122 Gaussian Distribution Gaussian Distribution (Normal Distribution) p(x; µ, σ) = 1 (2πσ2)1/2 exp � − 1 2σ2 (x − µ)2 � where µ is the mean and σ2 is the variance Gaussian distributions
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 GNU Image Manipulation Program User Manual 2.10

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 17.3.2 Gaussian Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 17.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 17.3.6 Selective Gaussian Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 17.3.7 Circular Motion all-or-nothing selection. Note For technically oriented readers: feathering works by applying a Gaussian blur to the selection channel, with the specified blurring radius. 7.1.2 Making a Selection Partially
    0 码力 | 1070 页 | 44.54 MB | 1 年前
    3
  • pdf文档 GNU Image Manipulation Program User Manual 2.4

    . . . . . . . . . 414 15.2.3 Gaussian Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 15.2.4 Selective Gaussian Blur . . . . . . . . . . . . Manipulation Program 77 / 653 Note For technically oriented readers: feathering works by applying a Gaussian blur to the selection channel, with the specified blurring radius. 7.1.2 Making a Selection Partially Duplicate the layer (producing a new layer above it). 2. Desaturate the new layer. 3. Apply a Gaussian blur to the result, with a large radius (100 or more). 4. Set Mode in the Layers dialog to Divide
    0 码力 | 653 页 | 19.93 MB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    y(i)), y(i) = θTx(i) + ϵ(i) The noise ϵ(i) is drawn from a Gaussian distribution ϵ(i) ∼ N(0, σ2) Each y(i) is drawn from the following Gaussian y(i)|x(i); θ ∼ N(θTx(i), σ2) The log-likelihood ℓ(θ) = and Bayesian Statistics September 20, 2023 17 / 25 Linear Regression: MAP Solution θ follows a Gaussian distribution θ ∼ N(0, λ2I) p(θ) = 1 (2πλ2)n/2 exp � −θTθ 2λ2 � and thus log p(θ) = n log 1 regularizer in MAP estimation For MAP, different prior distributions lead to different regularizers Gaussian prior on θ regularizes the ℓ2 norm of θ Laplace prior exp(C∥θ∥1) on θ regularizes the the ℓ1 norm
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 GIMP User Manual 2.2

    selection--by choosing Select Sharpen . For technically oriented readers: feathering works by applying a Gaussian blur to the selection channel, with the specified blurring radius. Making a selection partially image: Duplicate the layer (producing a new layer above it). Desaturate the new layer. Apply a Gaussian blur to the result, with a large radius (100 or more). Set Mode in the Layers dialog to Divide the magnitude or type of blurring. The most broadly useful of these is the Gaussian blur. (Don't let the word "Gaussian" throw you: this filter makes an image blurry in the most basic way.) It has
    0 码力 | 421 页 | 8.45 MB | 1 年前
    3
  • pdf文档 The Gimp User’s Manual version 1.0.1

    ..................... 401 Antialias 402 Blur 402 Gaussian Blur 403 Motion Blur 404 Pixelize 406 Selective Gaussian Blur 406 Tileable Blur 407 Variable Blur 407 their kind donation of high-quality images for this book project) • Thom van Os (Images in Selective Gaussian Blur) • Eric Galluzzo and Christopher Macgowan (Proofreading) • Nicholas Lamb (Tip about selections) shape of the letters. This was done by copying the text layer, filling it with gray and applying Gaussian blur (with Keep Transparent unchecked). Organic Patterns The leaf pattern was created in Render/IfsCompose
    0 码力 | 924 页 | 9.50 MB | 1 年前
    3
  • epub文档 Krita 5.2 Manual

    lady’s layer, and then creating a clone layer. We then right-click and add a filter mask and use Gaussian blur set to 10 or so pixels. The clone layer is then put behind the original layer, and set to the horizontal and vertical', 'emboss horizontal only', 'emboss laplascian', 'emboss vertical only', 'gaussian blur', 'gaussiannoisereducer', 'gradientmap', 'halftone', 'height to normal', 'hsvadjustment', transitions by using intermediate color values If you want even smoother effects, well, just use blur. Gaussian blur to be exact. And there you go. That last little trick concludes this tutorial. Curve Brush
    0 码力 | 1502 页 | 79.07 MB | 1 年前
    3
  • epub文档 Krita 5.2 브로셔

    horizontal and vertical', 'emboss horizontal only', 'emboss laplascian', 'emboss vertical only', 'gaussian blur', 'gaussiannoisereducer', 'gradientmap', 'halftone', 'height to normal', 'hsvadjustment', transitions by using intermediate color values If you want even smoother effects, well, just use blur. Gaussian blur to be exact. And there you go. That last little trick concludes this tutorial. Curve Brush circumference at a distance of 100 pixels, while being 10 times smaller in length. Gaussian: distributes the particles using a gaussian or normal distribution [https://en.wikipedia.org/wiki/Normal_distribution]
    0 码力 | 1531 页 | 79.11 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    assume " denote the noise and is independently and identically distributed (i.i.d.) according to a Gaussian distribution N(0, �2). The density of "(i) is given by f(✏) = 1 p 2⇡� exp ✓ � ✏2 2�2 ◆ Hence the least square in the linear model comes from the fact that the training data are sampled with Gaussian noise. 6
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
共 253 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 26
前往
页
相关搜索词
LectureNotesonGaussianDiscriminantAnalysisNaiveBayesGNUImageManipulationProgramUserManual2.102.4RegularizationandBayesianStatisticsGIMP2.2TheGimpversion1.0Krita5.2LinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩