积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1322)Python(412)综合其他(392)Java(371)Spring(314)Weblate(302)云计算&大数据(276)数据库(185)C++(120)VirtualBox(112)

语言

全部英语(1831)中文(简体)(318)中文(繁体)(22)日语(18)法语(16)德语(15)俄语(15)韩语(13)西班牙语(12)英语(6)

格式

全部PDF文档 PDF(1675)其他文档 其他(526)TXT文档 TXT(67)PPT文档 PPT(4)DOC文档 DOC(2)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • Java
  • Spring
  • Weblate
  • 云计算&大数据
  • 数据库
  • C++
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 法语
  • 德语
  • 俄语
  • 韩语
  • 西班牙语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 CurveBS IO Processing Flow

    CurveBS I/O processing flow Before introducing IO processing flow, we first describe the overall architecture, data organization and topology structure of CURVE. CurveBS uses the central sockets. l Nebdserver: Accepts requests from NEBDClient and calls Curve Client for corresponding processing. it can receive requests from different NEBDClients.3. Through the above splitting, NebdClient NebdClient replaces Curve Client and directly interfaces with upper services. There is no logical processing in NEBDClient, it just proxy requests and has limited retries, which ensuring that NEBDClient
    0 码力 | 13 页 | 2.03 MB | 5 月前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/23: Stream Processing Fundamentals Vasiliki Kalavri | Boston University University 2020 What is a stream? • In traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is a data set that is produced incrementally incrementally over time, rather than being available in full before its processing begins. • Data streams are high-volume, real-time data that might be unbounded • we cannot store the entire stream
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 2.1.5 Processing XML and Spreadsheet Data in Go

    Processing XML and Spreadsheet in Go 续 日 Gopher China Conference Beijing 2021 6/26 - 6/27 Self Introduction The author of the Excelize - Go language spreadsheet library. Familiar with Go language Complex XML 02 • Partial Load • Namespace & Entity • Ser/Deserialize Idempotence High Performance Processing 03 • XML Schema Definition • DOM or SAX OOXML Spreadsheets 04 • Excel XML Specification • work:addr="WORK"> High Performance Processing XML Components Data Model Tom
    0 码力 | 35 页 | 1.34 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Scalable Stream Processing - Spark Streaming and Flink Amir H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 Contribution ▶ Design issues issues • Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic batch jobs. • Chops
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 【04 RocketMQ 王鑫】Stream Processing with Apache RocketMQ and Apache Flink

    0 码力 | 30 页 | 24.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015. • Mitzenmacher, Michael. The power of two choices in randomized load balancing
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/25: State Management Vasiliki Kalavri | Boston operator. Keyed state can only be used by functions that are applied on a KeyedStream: • When the processing method of a function with keyed input is called, Flink’s runtime automatically puts all keyed fare, Collector> out) throws Exception {
 // similar logic for processing fare events
 }
 }
 } Java example (cont.) 21 Vasiliki Kalavri | Boston University 2020
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/14: Stream processing optimizations ??? Vasiliki Kalavri | Boston University serialization cost • if operators are separate, throughput is bounded by either communication or processing cost • if fused, throughput is determined by operator cost only Operator fusion A B A B is statically configured with a certain number of processing slots that defines the maximum number of concurrent tasks it can execute. • A processing slot can execute one slice of an application, i.e
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/11: Windows and Triggers Vasiliki Kalavri | Boston windowing use cases: • They assign an element based on its event-time timestamp or the current processing time to windows. • Time windows have a start and an end timestamp. • All built-in window assigners assigners provide a default trigger that triggers the evaluation of a window once the (processing or event) time passes the end of the window. • A window is created when the first element is assigned
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/21: Introduction Vasiliki Kalavri | Boston University course, you will hopefully: • know when to use stream processing vs other technology • be able to comprehensively compare features and processing guarantees of streaming systems • be proficient in using end-to-end, scalable, and reliable streaming applications • have a solid understanding of how stream processing systems work and what factors affect their performance • be aware of the challenges and trade-offs
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
CurveBSIOProcessingFlowStreamprocessingfundamentalsCS591K1DataandAnalyticsSpring20202.1XMLSpreadsheetinGoScalableSparkStreamingFlink04RocketMQ王鑫withApacheSkewmitigationStatemanagementoptimizationsWindowstriggersCourseintroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩