积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(97)其它语言(34)区块链(25)Julia(20)Lean(7)系统运维(5)Python(4)C++(4)Django(4)Idris(3)

语言

全部英语(94)中文(繁体)(8)中文(简体)(1)

格式

全部PDF文档 PDF(72)其他文档 其他(31)
 
本次搜索耗时 0.054 秒,为您找到相关结果约 103 个.
  • 全部
  • 后端开发
  • 其它语言
  • 区块链
  • Julia
  • Lean
  • 系统运维
  • Python
  • C++
  • Django
  • Idris
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    Theorem Proving in Lean Release 3.23.0 Jeremy Avigad, Leonardo de Moura, and Soonho Kong Apr 25, 2023 CONTENTS 1 Introduction 1 1.1 Computers and Theorem Proving . . . . . . . . . . . . . . . . . . . . . 163 Bibliography 167 iii iv CHAPTER ONE INTRODUCTION 1.1 Computers and Theorem Proving Formal verification involves the use of logical and computational methods to establish claims that mathematical terms, at which point establishing claims as to their correctness becomes a form of theorem proving. Conversely, the proof of a mathematical theorem may require a lengthy computation, in which case
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    prover” as “fear improver.” Consider yourself warned. Rigorous and Formal Proofs Interactive theorem proving has its own terminol- ogy, already starting with the notion of “proof.” A formal proof is a logical PVS; Lisp-like first-order logic: ACL2. For a history of proof assistants and interactive theorem proving, we refer to Harrison, Urban, and Wiedijk’s highly informative chapter [14]. Lean Lean is a new rough edges, there are several reasons why Lean is a suitable vehicle to teach interactive theorem proving: It has a highly expressive, and highly interesting, logic based on the calculus of inductive constructions
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 An Introduction to Lean

    3.6 An Example: Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Theorem Proving in Lean 38 4.1 Assertions in Dependent Type Theory . . . . . . . . . . . . . . . . . . . . . 38 recommend continuing, from here, to either of the following more expansive introductions: • Theorem Proving in Lean • Programming in Lean The first focuses on the use of Lean as a theorem prover, whereas the elaborator by indicating that we intend to coerce the list to a var_assignment. 4 Theorem Proving in Lean 4.1 Assertions in Dependent Type Theory We have seen that dependent type theory is flexible
    0 码力 | 48 页 | 191.92 KB | 1 年前
    3
  • pdf文档 Programming in Lean Release 3.4.2

    tutorial can be viewed as a companion to Theorem Proving in Lean, which presents Lean as a system for building mathematical libraries and stating and proving mathematical theorems. From that perspective, just happens to come equipped with a rich specification language and an interactive environment for proving that programs meet their specifications. The specification language and proof system are quite powerful define functions in natural ways. At the same, the system provides complementary mechanisms for proving claims, using inductive principles that capture the structure of the function definitions. One novel
    0 码力 | 51 页 | 220.07 KB | 1 年前
    3
  • pdf文档 The Idris Tutorial Version 0.9.18

    — matching intermediate values . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 Theorem Proving 41 9.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ghci style interface which allows evaluation of, as well as type checking of, expressions; theorem proving, compilation; editing; and various other operations. The command :? gives a list of supported commands complete the definition of parity. 40 Chapter 8. Views and the “with” rule CHAPTER 9 Theorem Proving 9.1 Equality Idris allows propositional equalities to be declared, allowing theorems about programs
    0 码力 | 69 页 | 316.20 KB | 1 年前
    3
  • pdf文档 The Idris Tutorial Version 0.11

    Packages 35 8 Example: The Well-Typed Interpreter 37 9 Views and the “with” rule 41 10 Theorem Proving 43 11 Provisional Definitions 47 12 Interactive Editing 51 13 Syntax Extensions 55 14 Miscellany ghci style interface which allows evaluation of, as well as type checking of, expressions; theorem proving, compilation; editing; and various other operations. The command :? gives a list of supported commands complete the definition of parity. 42 Chapter 9. Views and the “with” rule CHAPTER 10 Theorem Proving 10.1 Equality Idris allows propositional equalities to be declared, allowing theorems about programs
    0 码力 | 71 页 | 314.20 KB | 1 年前
    3
  • pdf文档 The Idris Tutorial Version 0.9.20.1

    matching intermediate values . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10 Theorem Proving 43 10.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ghci style interface which allows evaluation of, as well as type checking of, expressions; theorem proving, compilation; editing; and various other operations. The command :? gives a list of supported commands complete the definition of parity. 42 Chapter 9. Views and the “with” rule CHAPTER 10 Theorem Proving 10.1 Equality Idris allows propositional equalities to be declared, allowing theorems about programs
    0 码力 | 71 页 | 316.18 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2

    Taste of Agda Preliminaries Programming With Dependent Types: Vectors Agda as a Proof Assistant: Proving Associativity of Addition Building an Executable Agda Program Where to go from here? A List of Tutorials type Fin 0. For more details, see the section on coverage checking. Agda as a Proof Assistant: Proving Associativity of Addition In this section we state and prove the associativity of addition on the that x and y are equal objects. By writing a function that returns an object of type x ≡ y, we are proving that the two terms are equal. Now we can state associativity: given three (possibly different) natural
    0 码力 | 348 页 | 414.11 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.2

    Taste of Agda Preliminaries Programming With Dependent Types: Vectors Agda as a Proof Assistant: Proving Associativity of Addition Building an Executable Agda Program Where to go from here? A List of Tutorials type Fin 0. For more details, see the section on coverage checking. Agda as a Proof Assistant: Proving Associativity of Addition In this section we state and prove the associativity of addition on the that x and y are equal objects. By writing a function that returns an object of type x ≡ y, we are proving that the two terms are equal. Now we can state associativity: given three (possibly different) natural
    0 码力 | 354 页 | 433.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.1

    Taste of Agda Preliminaries Programming With Dependent Types: Vectors Agda as a Proof Assistant: Proving Associativity of Addition Building an Executable Agda Program Where to go from here? A List of Tutorials type Fin 0. For more details, see the section on coverage checking. Agda as a Proof Assistant: Proving Associativity of Addition In this section we state and prove the associativity of addition on the that x and y are equal objects. By writing a function that returns an object of type x ≡ y, we are proving that the two terms are equal. Now we can state associativity: given three (possibly different) natural
    0 码力 | 350 页 | 416.80 KB | 1 年前
    3
共 103 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 11
前往
页
相关搜索词
TheoremProvinginLeanRelease3.23TheHitchhikerGuidetoLogicalVerificationAnIntroductionProgramming3.4IdrisTutorialVersion0.9180.1120.1AgdaUserManualv26.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩