积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)后端开发(20)Python(20)Conda(16)Pandas(13)数据库(12)Greenplum(12)机器学习(8)

语言

全部英语(43)中文(简体)(10)

格式

全部PDF文档 PDF(53)
 
本次搜索耗时 0.105 秒,为您找到相关结果约 53 个.
  • 全部
  • 云计算&大数据
  • 后端开发
  • Python
  • Conda
  • Pandas
  • 数据库
  • Greenplum
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    机器学习-机器学习库Scikit-learn 黄海广 副教授 2 本章目录 01 Scikit-learn概述 02 Scikit-learn主要用法 03 Scikit-learn案例 3 1.Scikit-learn概述 01 Scikit-learn概述 02 Scikit-learn主要用法 03 Scikit-learn案例 4 1.Scikit-learn概述 Scikit-learn概述 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学 习 习算法。还包括了特征提取,数据处理和模型评估三大模块。 5 6 2.Scikit-learn主要用法 01 Scikit-learn概述 02 Scikit-learn主要用法 03 Scikit-learn案例 7 X_train | 训练数据. X_test | 测试数据. X | 完整数据. 符号标记 2.Scikit-learn主要用法 y_train | 训练集标签.
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 Conda 4.6.0 Documentation

    Search for a specific package named ‘scikit-learn’: conda search scikit-learn Search for packages containing ‘scikit’ in the package name: conda search scikit Note that your shell may expand ‘*’ before is sometimes necessary to use single or double quotes around the query. conda search ‘scikit’ conda search “*scikit” Search for packages for 64-bit Linux (by default, packages for your current platform satisfy dependencies. For example, executing: conda install conda-forge::scikit-learn will confine all future changes to the scikit-learn package in the environment to the conda-forge channel, until the
    0 码力 | 190 页 | 728.67 KB | 7 月前
    3
  • pdf文档 Conda 4.6.1 Documentation

    Search for a specific package named ‘scikit-learn’: conda search scikit-learn Search for packages containing ‘scikit’ in the package name: conda search scikit Note that your shell may expand ‘*’ before is sometimes necessary to use single or double quotes around the query. conda search ‘scikit’ conda search “*scikit” Search for packages for 64-bit Linux (by default, packages for your current platform satisfy dependencies. For example, executing: conda install conda-forge::scikit-learn will confine all future changes to the scikit-learn package in the environment to the conda-forge channel, until the
    0 码力 | 190 页 | 728.57 KB | 7 月前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 18 可视化 Visualization 234 19 Scikit-learn API 235 20 工具 236 20.1 CustomObjectScope [source] . . . . . . . . . . . . . . . . . . . SGD(lr=0.01, momentum=0.9, nesterov=True)) 现在,你可以批量地在训练数据上进行迭代了: # x_train 和 y_train 是 Numpy 数组 -- 就像在 Scikit-Learn API 中一样。 model.fit(x_train, y_train, epochs=5, batch_size=32) 或者,你可以手动地将批次的数据提供给模型: model create(prog='dot', format='svg')) SCIKIT-LEARN API 235 19 Scikit-learn API Scikit-Learn API 的封装器 你可以使用 Keras 的顺序模型 (仅限单一输入) 作为 Scikit-Learn 工作流程的一部分,通过在 此找到的包装器: keras.wrappers.scikit_learn.py. 有两个封装器可用: keras
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Conda 23.3.x Documentation

    tions. Building NumPy with BLAS variants If you build NumPy with MKL, you also need to build SciPy, scikit-learn, and anything else using BLAS also with MKL. It is important to ensure that these “variants” Search for a specific package named 'scikit-learn': conda search scikit-learn Search for packages containing 'scikit' in the package name: conda search *scikit* Note that your shell may expand '*' sometimes necessary to use single or double quotes around the query: conda search '*scikit' conda search "*scikit*" Search for packages for 64-bit Linux (by default, packages for your current platform
    0 码力 | 370 页 | 2.94 MB | 7 月前
    3
  • pdf文档 keras tutorial

    3: Python libraries Keras depends on the following python libraries.  Numpy  Pandas  Scikit-learn  Matplotlib  Scipy  Seaborn Hopefully, you have installed all the above libraries macosx_10_10_intel.macosx_10_10_x86_64.whl (14.4MB) |████████████████████████████████| 14.4MB 2.8MB/s scikit-learn It is an open source machine learning library. It is used for classification, regression Keras 6  joblib 0.11 or higher. Now, we install scikit-learn using the below command: pip install -U scikit-learn Seaborn Seaborn is an amazing library that allows you to easily
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Python的智能问答之路 张晓庆

    cosine/fasttext cosine • wmd:计算wmd特征 • esim:计算lstm-esim特征 • tensorflow:计算transformer-esim特征 • scikit learn:调用LR训练模型 各个击破-评估 • 评估数据 Ø 领域均衡:6个领域,每个领域50个知识点 Ø 评估数据对标训练数据:每个知识点12个相似问用于训练,3个相似问用于评估 • 降低资源占用 Ø 方便灵活扩容 Ø 资源充分利用 • 服务框架 Ø http:短链接,简单,开发方便 Ø grpc:长链接,安全性 3 Python开发的利与弊 优势总结、缺点举例 机器学习库scikit learn 计算库numpy 文本挖掘库gensim 深度学习库tensorflow等 强大的第三方 工具库 支持其它语言 优势互补 开发便捷 调试简单 语法简单 易用性强
    0 码力 | 28 页 | 2.60 MB | 1 年前
    3
  • pdf文档 Conda 23.10.x Documentation

    tions. Building NumPy with BLAS variants If you build NumPy with MKL, you also need to build SciPy, scikit-learn, and anything else using BLAS also with MKL. It is important to ensure that these “variants” Search for a specific package named 'scikit-learn': conda search scikit-learn Search for packages containing 'scikit' in the package name: conda search *scikit* Note that your shell may expand '*' sometimes necessary to use single or double quotes around the query: conda search '*scikit' conda search "*scikit*" Search for packages for 64-bit Linux (by default, packages for your current platform
    0 码力 | 773 页 | 5.05 MB | 7 月前
    3
  • pdf文档 Conda 23.7.x Documentation

    tions. Building NumPy with BLAS variants If you build NumPy with MKL, you also need to build SciPy, scikit-learn, and anything else using BLAS also with MKL. It is important to ensure that these “variants” Search for a specific package named 'scikit-learn': conda search scikit-learn Search for packages containing 'scikit' in the package name: conda search *scikit* Note that your shell may expand '*' sometimes necessary to use single or double quotes around the query: conda search '*scikit' conda search "*scikit*" Search for packages for 64-bit Linux (by default, packages for your current platform
    0 码力 | 795 页 | 4.91 MB | 7 月前
    3
  • pdf文档 Conda 23.11.x Documentation

    tions. Building NumPy with BLAS variants If you build NumPy with MKL, you also need to build SciPy, scikit-learn, and anything else using BLAS also with MKL. It is important to ensure that these “variants” Search for a specific package named 'scikit-learn': conda search scikit-learn Search for packages containing 'scikit' in the package name: conda search *scikit* Note that your shell may expand '*' sometimes necessary to use single or double quotes around the query: conda search '*scikit' conda search "*scikit*" Search for packages for 64-bit Linux (by default, packages for your current platform
    0 码力 | 781 页 | 4.79 MB | 7 月前
    3
共 53 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
机器学习课程温州大学ScikitlearnConda4.6DocumentationKeras基于Python深度23.3kerastutorial智能问答张晓庆23.1023.723.11
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩