积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(83)后端开发(75)综合其他(43)云计算&大数据(43)PostgreSQL(40)系统运维(36)Blender(36)Python(34)Django(34)Pandas(32)

语言

全部英语(218)中文(简体)(45)中文(繁体)(14)法语(1)ro(1)

格式

全部PDF文档 PDF(252)其他文档 其他(26)DOC文档 DOC(2)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 280 个.
  • 全部
  • 数据库
  • 后端开发
  • 综合其他
  • 云计算&大数据
  • PostgreSQL
  • 系统运维
  • Blender
  • Python
  • Django
  • Pandas
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 法语
  • ro
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Estimation of Availability and Reliability in CurveBS

    Estimation of availability and reliability in CurveBS CurveBS uses the RAFT protocol to maintain consistency of stored data. It generally takes the form of 3 replicas of data. If one replica fails intervention is required to handle the failure according to the actual situation of the system. Estimation of availability and reliability in the three- replicas case Assume that the total number of
    0 码力 | 2 页 | 34.51 KB | 5 月前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/23: Cardinality and frequency estimation ??? Vasiliki Kalavri | Boston University 2020 Counting distinct elements 2 ??? Vasiliki Kalavri Boston University 2020 26 • Query approximation error • Error probability Guarantee: The estimation error for frequencies will not exceed with probability • A higher number of hash functions 2003. • Flajolet, Philippe, et al. Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. 2007. https://hal.archives-ouvertes.fr/file/index/docid/406166/ filename/FlFuGaMe07
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    satisfied Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 11 / 25 Parameter Estimation in Probabilistic Models Assume data are generated via probabilistic model d ∼ p(d; θ) p(d; θ): Regularization and Bayesian Statistics September 20, 2023 12 / 25 Maximum Likelihood Estimation (MLE) Maximum Likelihood Estimation (MLE): Choose the parameter θ that maximizes the probability of the data, given parameter estimation θMLE = arg max θ ℓ(θ) = arg max θ m � i=1 log p(d(i); θ) Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 13 / 25 Maximum-a-Posteriori Estimation (MAP)
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 MITRE Defense Agile Acquisition Guide - Mar 2014

    ................................................................................ 33 11 Cost Estimation .............................................................................................. stories to concisely define the desired system functions and provide the foundation for Agile estimation and planning. They describe what the users want to accomplish with the resulting system. User officer and Agile team?  How is the government monitoring the contractor’s performance? 11 Cost Estimation Estimating costs in an Agile environment requires a more iterative, integrated, and collaborative
    0 码力 | 74 页 | 3.57 MB | 5 月前
    3
  • pdf文档 Measuring Woody: The Size of Debian 3.0

    [Boehm1981], the effort to build a system with the same size as Debian 3.0 can be estimated. This estimation assumes a “classical”, proprietary development model, 9 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 developed independently from the others, which in nearly all cases is true. For calculating the cost estimation, we have used the mean salary for a full-time systems programmer during 2000, according to Computer and an overhead factor of 2.4 (for an expla- nation on why this factor, and other details of the estimation model, see [Wheeler2001]). 5 Some comments and comparisons The numbers offered in the previous
    0 码力 | 15 页 | 111.82 KB | 1 年前
    3
  • epub文档 Django Q Documentation Release 0.7.9

    call_command', 'clearsessions', schedule_type='H') Groups A group example with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s Group example with Parzen-window estimation import numpy from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return
    0 码力 | 62 页 | 514.67 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.9

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 50 页 | 397.77 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.13

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 56 页 | 416.37 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.11

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 54 页 | 412.45 KB | 1 年前
    3
  • epub文档 Django Q Documentation Release 0.7.10

    call_command', 'clearsessions', schedule_type='H') Groups A group example with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s Group example with Parzen-window estimation import numpy from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return
    0 码力 | 67 页 | 518.39 KB | 1 年前
    3
共 280 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 28
前往
页
相关搜索词
EstimationofAvailabilityandReliabilityinCurveBSCardinalityfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020LectureRegularizationBayesianStatisticsMITREDefenseAgileAcquisitionGuideMar2014MeasuringWoodyTheSizeDebian3.0DjangoDocumentationRelease0.7131110
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩