积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(46)云计算&大数据(38)TiDB(30)Apache Kyuubi(30)Greenplum(12)Apache Flink(5)后端开发(2)系统运维(2)C++(2)数据库中间件(2)

语言

全部英语(68)中文(简体)(20)

格式

全部PDF文档 PDF(73)其他文档 其他(15)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 88 个.
  • 全部
  • 数据库
  • 云计算&大数据
  • TiDB
  • Apache Kyuubi
  • Greenplum
  • Apache Flink
  • 后端开发
  • 系统运维
  • C++
  • 数据库中间件
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/28: Stream ingestion and pub/sub systems Streaming sources Files, e.g. transaction logs Sockets IoT devices and
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    data silos or integration bottlenecks. A modern Real-Time UDL typically includes: Real-time data ingestion from structured, semi-structured and unstructured sources (IoT, logs, event streams). Multi-model real- time insights, delaying critical business actions. Optimized Ingestion, Indexing and Querying Real-Time UDLs index data upon ingestion and execute complex queries on very large data sets in the sub-second for many applications. Continuous data flow: CrateDB handles high-throughput, high-velocity data ingestion and analysis, ensuring businesses can respond dynamically to changing conditions. Instant data insights:
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 Pivotal HVR meetup 20190816

    Multiple SCD models (slides after that...) • Good “dove-tailing” with subsequent “sematic” ETL steps Ingestion into relational data lake semantic layer (cubes, marts etc..) ODS, e.g. redshift, greenplum uncompacted data in target S3 • HVR also delivers meta-data as hive external tables definitions Ingestion into data lake storage compaction storage, e.g. CSV or Avro files on S3 semantic layer (cubes need SQL access will get ‘basic’ replication Added value from HVR • Easy to setup • Performant Ingestion into data lake using streaming compaction semantic layer (cubes, marts etc..) ETL ODS, e.g
    0 码力 | 31 页 | 2.19 MB | 1 年前
    3
  • pdf文档 Continuous Regression Testing for Safer and Faster Refactoring

    test input.18 Aurora Innovation Higher-level tests in practice Safely rewriting a critical data ingestion pipeline 500,000 + lines of code 12,000 + real-world datasets 10,000 + attributes to verify messages:[MessageBuffer]; } root_type Messages;52 Aurora Innovation Data ingestion w/ async processing53 Aurora Innovation Data ingestion w/ on-demand processing54 Aurora Innovation Data Retention Local Filesystem
    0 码力 | 85 页 | 11.66 MB | 5 月前
    3
  • pdf文档 OpenShift Container Platform 4.8 日志记录

    8388608 chunk_target_size: 8388608 ingestion_rate_mb: 8 ingestion_burst_size_mb: 16 2. 将 loki.yaml 中的更改应用到 Loki 服务器。 loki.yaml 文件示例 文件示例 429 Too Many Requests Ingestion rate limit exceeded (limit: 8388608 bytes/sec) while attempting to ingest '2140' lines totaling '3285284' bytes 429 Too Many Requests Ingestion rate limit exceeded' or '500 Internal Server Error rpc error: code = ResourceExhausted desc = grpc: filesystem limits_config: reject_old_samples: true reject_old_samples_max_age: 12h ingestion_rate_mb: 8 ingestion_burst_size_mb: 16 chunk_store_config: max_look_back_period: 0s table_manager:
    0 码力 | 223 页 | 2.28 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.0-rc1 Documentation

    build dynamic tables for both streaming and batch processing in Flink, sup- porting high-speed data ingestion and timely data query. Tip: This article assumes that you have mastered the basic knowledge and build dynamic tables for both streaming and batch processing in Flink, sup- porting high-speed data ingestion and timely data query. Tip: This article assumes that you have mastered the basic knowledge and build dynamic tables for both streaming and batch processing in Flink, sup- porting high-speed data ingestion and timely data query. Tip: This article assumes that you have mastered the basic knowledge and
    0 码力 | 206 页 | 3.78 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.3 Documentation

    (Incubating) Apache Paimon(incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking and efficient real-time analytics. Tip: This article assumes that you have (Incubating) Apache Paimon (Incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking, and efficient real-time analytics. Tip: This article assumes that you have (Incubating) Apache Paimon(incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking and efficient real-time analytics. Tip: This article assumes that you have
    0 码力 | 211 页 | 3.79 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.1-rc0 Documentation

    (Incubating) Apache Paimon(incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking and efficient real-time analytics. Tip: This article assumes that you have (Incubating) Apache Paimon (Incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking, and efficient real-time analytics. Tip: This article assumes that you have (Incubating) Apache Paimon(incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking and efficient real-time analytics. Tip: This article assumes that you have
    0 码力 | 208 页 | 3.78 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.3-rc0 Documentation

    (Incubating) Apache Paimon(incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking and efficient real-time analytics. Tip: This article assumes that you have (Incubating) Apache Paimon (Incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking, and efficient real-time analytics. Tip: This article assumes that you have (Incubating) Apache Paimon(incubating) is a streaming data lake platform that supports high-speed data ingestion, change data tracking and efficient real-time analytics. Tip: This article assumes that you have
    0 码力 | 211 页 | 3.79 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.0-rc0 Documentation

    build dynamic tables for both streaming and batch processing in Flink, sup- porting high-speed data ingestion and timely data query. Tip: This article assumes that you have mastered the basic knowledge and build dynamic tables for both streaming and batch processing in Flink, sup- porting high-speed data ingestion and timely data query. Tip: This article assumes that you have mastered the basic knowledge and build dynamic tables for both streaming and batch processing in Flink, sup- porting high-speed data ingestion and timely data query. Tip: This article assumes that you have mastered the basic knowledge and
    0 码力 | 210 页 | 3.79 MB | 1 年前
    3
共 88 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
StreamingestionandpubsubsystemsCS591K1DataProcessingAnalyticsSpring2020RealTimeUnifiedLayersNewEraforScalableSearchAIPivotalHVRmeetup20190816ContinuousRegressionTestingSaferFasterRefactoringOpenShiftContainerPlatform4.8日志记录ApacheKyuubi1.7rc1Documentationrc0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩