积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1256)Python(416)综合其他(348)云计算&大数据(288)Java(284)Weblate(269)数据库(218)Spring(218)C++(146)VirtualBox(113)

语言

全部英语(1650)中文(简体)(512)中文(繁体)(34)日语(7)英语(7)西班牙语(6)法语(4)韩语(4)葡萄牙语(3)

格式

全部PDF文档 PDF(1695)其他文档 其他(534)PPT文档 PPT(12)DOC文档 DOC(2)
 
本次搜索耗时 0.518 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • 云计算&大数据
  • Java
  • Weblate
  • 数据库
  • Spring
  • C++
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 英语
  • 西班牙语
  • 法语
  • 韩语
  • 葡萄牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 min max and More

    Correctly Calculating min, max, and More... 2021-10-29 Copyright © 2020-2021 by Walter E. Brown. All rights reserved. 1 Welcome! 1 Sound check [London Fanfare Trumpets: Flourish Copyright © 2020-2021 by W alter E. Brown. All rights reserved. 2 Correctly Calculating min, max, and More Walter E. Brown, Ph.D. < webrown.cpp @ gmail.com > Edition: 2021-10-29. Copyright © serves as a stimulating introduction to the study of truth. — Walter Lippmann 7 Correctly Calculating min, max, and More... 2021-10-29 Copyright © 2020-2021 by Walter E. Brown. All rights reserved. 2
    0 码力 | 8 页 | 2.48 MB | 5 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    powerful Python data analysis toolkit, Release 0.13.1 min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element. (GH6214) 1.2.2 Prior Version Deprecations/Changes values=’MEAN_TEMP’) df3 = pandas.concat([df2.min(), df2.mean(), df2.max()], axis=1,keys=["Min Tem", "Mean Temp", "Max Temp"]) The resulting DataFrame is: > df3 Min Tem Mean Temp Max Temp MONTH 1 -53.336667 indexes during join operations (GH3877) • Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date- time.min and datetime.max (respectively), thanks @SleepingPills
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    indexes during join operations (GH3877) • Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date- time.min and datetime.max (respectively), thanks @SleepingPills Series. – deprecated the unique method, can be replicated by select_column(key,column).unique() – min_itemsize parameter to append will now automatically create data_columns for passed keys 1.2.8 Enhancements return the calling object as before. A deprecation message has been added • Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700) • Resampling an empty DataFrame now returns an empty DataFrame
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    Out[38]: B A 1 count 1.000000 mean 4.000000 std NaN min 4.000000 25% 4.000000 50% 4.000000 75% 4.000000 ... ... 5 mean 7.000000 std 1.414214 min 6.000000 25% 6.500000 50% 7.000000 75% 7.500000 count 2 1.000000 mean 1 4.000000 std 0 NaN min 1 4.000000 25% 1 4.000000 50% 1 4.000000 75% 1 4.000000 ... .. ... 1 mean 5 7.000000 std 0 1.414214 min 5 6.000000 25% 5 6.500000 50% 5 7.000000 rolling-moment functions to dictate how to handle resampling; rolling_max() de- faults to max, rolling_min() defaults to min, and all others default to mean (GH6297) 22 Chapter 1. What’s New pandas: powerful Python
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    microseconds and nanoseconds separately. # Timedelta accessor In [9]: tds = Timedelta(’31 days 5 min 3 sec’) In [10]: tds.minutes Out[10]: 5L In [11]: tds.seconds Out[11]: 3L # datetime.timedelta accessor Rolling/Expanding Moments improvements • rolling_min(), rolling_max(), rolling_cov(), and rolling_corr() now return objects with all NaN when len(arg) < min_periods <= window rather than raising. (This makes 11, 12, 13]) In [15]: rolling_min(s, window=10, min_periods=5) ValueError: min_periods (5) must be <= window (4) New behavior In [70]: rolling_min(s, window=10, min_periods=5) Out[70]: 0 NaN 1 NaN
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    microseconds and nanoseconds separately. # Timedelta accessor In [9]: tds = Timedelta(’31 days 5 min 3 sec’) In [10]: tds.minutes Out[10]: 5L In [11]: tds.seconds Out[11]: 3L # datetime.timedelta accessor Rolling/Expanding Moments improvements • rolling_min(), rolling_max(), rolling_cov(), and rolling_corr() now return objects with all NaN when len(arg) < min_periods <= window rather than raising. (This makes Release 0.15.1 In [15]: rolling_min(s, window=10, min_periods=5) ValueError: min_periods (5) must be <= window (4) New behavior In [70]: rolling_min(s, window=10, min_periods=5) Out[70]: 0 NaN 1 NaN
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    To introduction tutorial To user guide Straight to tutorial... Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data my data table In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() method provides Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38.000000 31.000000 max 80
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    To introduction tutorial To user guide Straight to tutorial... Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data my data table In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() method provides Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38.000000 31.000000 max 80
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    To introduction tutorial To user guide Straight to tutorial... Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data Release 1.3.2 (continued from previous page) Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() method provides Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38.000000 31.000000 max 80
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    To introduction tutorial To user guide Straight to tutorial... Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data Release 1.3.3 In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() method provides Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38.000000 31.000000 max 80
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
minmaxandMorepandaspowerfulPythondataanalysistoolkit0.130.120.140.151.11.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩