积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(690)云计算&大数据(326)综合其他(191)Python(180)数据库(154)系统运维(136)UML(91)Weblate(90)Go(85)机器学习(74)

语言

全部中文(简体)(1330)英语(99)中文(简体)(18)中文(繁体)(14)西班牙语(13)法语(12)德语(11)日语(11)韩语(11)

格式

全部PDF文档 PDF(1333)其他文档 其他(184)PPT文档 PPT(33)DOC文档 DOC(4)TXT文档 TXT(1)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • Python
  • 数据库
  • 系统运维
  • UML
  • Weblate
  • Go
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 西班牙语
  • 法语
  • 德语
  • 日语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Curve元数据节点高可用

    © XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的mds节点为主,等待节点为备;主节点的服务挂掉之后,备节点能启动服务,尽量减小服务中断的时间。 需要解决的问题就是:如何确定主备节点。 需要解决的问题就是:如何确定主备节点。 2. 技术选型 提供配置共享和服务发现的系统比较多,其中最为大家熟知的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制:
    0 码力 | 30 页 | 2.42 MB | 5 月前
    3
  • pdf文档 OpenShift Container Platform 4.9 节点

    OpenShift Container Platform 4.9 节点 在 OpenShift Container Platform 中配置和管理节点 Last Updated: 2023-08-27 OpenShift Container Platform 4.9 节点 在 OpenShift Container Platform 中配置和管理节点 Enter your first name here community. All other trademarks are the property of their respective owners. 摘要 摘要 本文提供有关在集群中配置和管理节点、Pod 和容器的说明。它还提供有关配置 Pod 调度和放置、 使用作业(job)和 DaemonSet 来自动执行操作,以及确保集群保持高效性的其他任务信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 节 节点概述 点概述 1.1. 关于节点 读取操作 管理操作 增强操作 1.2. 关于 POD 读取操作 管理操作 增强操作 1.3. 关于容器 第 第 2 章 章 使用 使用 POD 2.1. 使用 POD
    0 码力 | 374 页 | 3.80 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.6 节点

    OpenShift Container Platform 4.6 节点 在 OpenShift Container Platform 中配置和管理节点 Last Updated: 2023-02-27 OpenShift Container Platform 4.6 节点 在 OpenShift Container Platform 中配置和管理节点 Enter your first name here community. All other trademarks are the property of their respective owners. 摘要 摘要 本文提供有关在集群中配置和管理节点、Pod 和容器的说明。它还提供有关配置 Pod 调度和放置、 使用作业(job)和 DaemonSet 来自动执行操作,以及确保集群保持高效性的其他任务信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 节 节点概述 点概述 1.1. 关于节点 读取操作 管理操作 功能增强操作 1.2. 关于 POD 读取操作 管理操作 功能增强操作 1.3. 关于容器 第 第 2 章 章 使用 使用 POD 2.1. 使用
    0 码力 | 404 页 | 3.60 MB | 1 年前
    3
  • pdf文档 Pod 容忍节点异常时间调整

    Pod 容忍节点异常时间调整 容忍节点异常时间调整 1. 原理说明 原理说明 Kubernetes 集群节点处于异常状态之后需要有⼀个等待时间,才会对节点上的 Pod 进⾏驱逐。那么针对部分关键业务,是否可以调整这个时间,便于在节点发⽣异常时及时将 Pod 驱逐 并在别的健康节点上重建? 要解决这个问题,我们⾸先要了解 Kubernetes 在节点异常时驱逐 Pod 的机制。 在 Kubernetes gate,节点及其上 Pod 的⽣命周期管理将通过节点的 Condition 和 Taint 来进⾏,Kubernetes 会不断地检查所有节点状态,设置对应的 Condition,根据 Condition 为节点设置对应的 Taint,再根据 Taint 来驱逐节点上的 Pod。 同时在创建 Pod 时会默认为 Pod 添加相应的 tolerationSeconds 参数,指定当节点出现异常(如 Pod 还将在这个节点上运⾏多⻓的时间。 那么,节点发⽣异常到 Pod 被驱逐的时间,就取决于两个参数:1. 节点实际异常到被判断为不健康的时间;2. Pod 对节点不健康的容忍时间。 Kubernetes 集群中默认节点实际异常到被判断为不健康的时间为 40s,Pod 对节点 NotReady 的容忍时间为 5min,也就是说,节点实际异常 5min40s(340s)后,节点上的 Pod 才会
    0 码力 | 4 页 | 104.64 KB | 1 年前
    3
  • pdf文档 数据迁移

    数据迁移 数据迁移 存量 存量 MySQL 迁移到 迁移到 TiDB 服务 服务 UDTS 产品⽀持 MySQL(5.5/5.6/5.7/8.0) 到 TiDB 的全量数据迁移, 及增量数据同步。 可协助⽤⼾在不停机的情况下轻松将业务从MySQL 切换⾄ TiDB。 ⾃建 ⾃建 TiDB 迁移到 迁移到 TiDB 服务 服务 UDTS 产品⽀持 TiDB 全量数据迁移⾄ TiDB服务。 ⽤⼾在源TiDB开启Pump ⽤⼾在源TiDB开启Pump, Drainer 可进⾏数据增量同步。 UDTS与源端Pump, Drainer⼀起可协助⽤⼾在不停机的情况下轻松将业 务从⾃建TiDB 切换⾄ TiDB 服务。 为 为 TiDB 服务建⽴ 服务建⽴ MySQL 从库 从库 UDTS 产品⽀持 TiDB 全量数据迁移⾄ MySQL 数据库。 ⽤⼾在TiDB服务上开启 Binlog 可将数据增量同步⾄下游MySQL。 UDTS 与 TiDB 服务建⽴ TiDB 从库 从库 UDTS 产品⽀持 TiDB 全量数据迁移⾄ TiDB 数据库。 ⽤⼾在源TiDB服务上开启 Binlog 可将数据增量同步⾄下游TiDB。 UDTS 与 TiDB Binlog服务⼀起可协助⽤⼾轻松建⽴TiDB从 数据迁移 Copyright © 2012-2021 UCloud 优刻得 1/2 库。 数据迁移 Copyright © 2012-2021 UCloud
    0 码力 | 2 页 | 42.01 KB | 6 月前
    3
  • pdf文档 Red Hat OpenShift GitOps 1.13 基础架构节点上的 GitOps 工作负载

    Hat OpenShift GitOps 1.13 基础架构节点上的 GitOps 工作负载 在基础架构节点上运行 GitOps control plane 工作负载 Last Updated: 2024-07-09 Red Hat OpenShift GitOps 1.13 基础架构节点上的 GitOps 工作负载 在基础架构节点上运行 GitOps control plane 工作负载 are the property of their respective owners. 摘要 摘要 本文档提供在 OpenShift GitOps 安装的基础架构节点上运行某些工作负载的说明。它还讨论如何将 默认工作负载移到基础架构节点。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 在基 在基础 础架 架构节 构节点上 点上运 运行 行 GITOPS CONTROL PLANE 工作 工作负载 负载 1.1. 将 GITOPS CONTROL PLANE 工作负载移到基础架构节点 1.2. 将 GITOPS OPERATOR POD 移到基础架构节点 1.3. 其他资源 3 3 4 6 目 目录 录 1 Red Hat
    0 码力 | 10 页 | 122.25 KB | 1 年前
    3
  • pdf文档 SQLite 数据转 Mysql

    SQLite 数据转 Mysql InsMsgServer 3.7.6 当前 InsMsgServer 环境 以下过程在 win7 sp1 x64 系统下完成,如果您的系统不能运行以下相关程序,请将服务器的 db/ 目录下的 IMBase.dat 文件复制到 win7 sp1 x64 系统下完成 利用 InsMsgServer 生成 Mysql 数据库 确保 确保 mysql 数据库中没有 IM 相关库 调整使用 Mysql 作为数据库,并点击启动 确认启动后数据库正确建立 退出 InsMsgServer,确保导入过程中不影响 InsMsgServer 运行 下载 SQLite Data Wizard 地址: http://www.sqlite.org/cvstrac/wiki?p=ConverterTools
    0 码力 | 17 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    Flink如何实时分析Iceberg数据湖的CDC数据 阿里巴巴 李/松/胡争 23选择 Flink Ic+b+1g #2 常DCCDC 分析方案 #1 如3实时写 4F取 ## 未来规划 #4 #见的CDC分析方案 #1 离线 HBase 集u分析 CDC 数a 、CDC记录实时写入HBase。高吞P + 低延迟。 2、小vSg询延迟低。 3、集u可拓展 ci评C 4、数a格式q定HF23e,不cF拓展到 +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    1 新一代数据管理和数据分析 解决方案 关于Greenplum公司 • Greenplum是一家数据库软件公司,在数据处理和 BI/DW领域,提供容量 最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle Software-Based Commodity HW • 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 现在 HPC 企业 SME 万亿字节 千兆字节 兆字节 千万亿字节 万亿字节 千兆字节
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
Curve数据节点可用OpenShiftContainerPlatform4.94.6Pod容忍异常时间调整迁移RedHatGitOps1.13基础架构基础架构工作负载SQLSQLiteMysqlFlink如何实时分析IcebergCDC大数集成HadoopIBMGreenplum一代新一代管理数据管理数据分析解决方案解决方案
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩