积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(124)数据库(84)Python(59)综合其他(48)PostgreSQL(40)数据库工具(35)phpMyAdmin(35)系统运维(33)云计算&大数据(33)Django(30)

语言

全部英语(271)中文(简体)(40)中文(繁体)(10)德语(1)日语(1)韩语(1)葡萄牙语(1)中文(简体)(1)

格式

全部PDF文档 PDF(239)其他文档 其他(82)DOC文档 DOC(3)PPT文档 PPT(2)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 326 个.
  • 全部
  • 后端开发
  • 数据库
  • Python
  • 综合其他
  • PostgreSQL
  • 数据库工具
  • phpMyAdmin
  • 系统运维
  • 云计算&大数据
  • Django
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 德语
  • 日语
  • 韩语
  • 葡萄牙语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 03 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22

    1 SCIENCE PASSION TECHNOLOGY Introduction to Scientific Writing 03 Experiments & Reproducibility Matthias Boehm Graz University of Technology, Austria Institute of Interactive Systems and Data Science Data Management Last update: Nov 11, 2021 2 706.015 Introduction to Scientific Writing – 03 Experiments & Reproducibility Matthias Boehm, Graz University of Technology, WS 2021/22 Announcements/Org 015 Introduction to Scientific Writing – 03 Experiments & Reproducibility Matthias Boehm, Graz University of Technology, WS 2021/22 Agenda  Experiments and Result Presentation  Reproducibility and
    0 码力 | 31 页 | 1.38 MB | 1 年前
    3
  • pdf文档 01 Structure of Scientific Papers - Introduction to Scientific Writing WS2021/22

    Papers [Oct 28, 6.15pm, optional]  02 Scientific Reading and Writing [Nov 04, 6pm, optional]  03 Experiments, Reproducibility, and Projects [Nov 11, 6pm, optional] ...  04 Project Presentations [Jan 13, Prototypes and Experiments  Worst Mistake: Schrödinger's Results  Postpone implementation and experiments till last before the deadline  No feedback, no reaction time (experiments require many iterations) Popper: falsifiability of scientific results  Continuous Experiments  Run experiments during survey / prototype building  Systematic experiments  observations and ideas for improvements  Don’t be afraid
    0 码力 | 36 页 | 1.12 MB | 1 年前
    3
  • pdf文档 02 Scientific Reading and Writing - Introduction to Scientific Writing WS2021/22

    overall idea clearly communicated and does it make sense?  Are there missing pieces, missing experiments, missing related work? Scientific Reading  Read out loud  Use PDF-to-Speech 11 706.015 Accept if no time to review  The Goldilocks Method (examples, proofs, theoretical analysis, experiments)  If you can’t say something nasty … (ignore good parts, focus on weaknesses)  Silent but deadly references are omitted”  Proposed Method  To simple, impractical, or well-known; correctness?  Experiments  Datasets synthetic/real, not all aspects evaluated, too small datasets  Conclusions  Disagree
    0 码力 | 26 页 | 613.57 KB | 1 年前
    3
  • pdf文档 Performance Matters

    Variance If p-value ≤ 5% we reject the null hypothesis p-value = 26.4% -O3 -O2 vs one in four experiments will show an effect that does not exist!Analysis of Variance If p-value ≤ 5% we reject the know causes this effect?� � � � � � Performance Experiments � � � � If we could magically speed up … �� � � � � � Performance Experiments � � � � If we could magically speed up � � � Performance Experiments � � � � If we could magically speed up … � More speedup in … � leads to a larger program speedup.� � � � � � Performance Experiments � � � � If we
    0 码力 | 197 页 | 11.90 MB | 5 月前
    3
  • pdf文档 9 盛泳潘 When Knowledge Graph meet Python

    Knowledge Graph oriented News Data Experiments – Experimental setting A Conceptual Knowledge Graph oriented News Data Experiments – Evaluation measures Experiments – Performance analysis of our extraction (including topic 1 to topic 5) from two datasets A Conceptual Knowledge Graph oriented News Data Experiments – Performance analysis of our extraction approach Table 1: Evaluation of precision, recall, and F-score on five independent document topics (including topic 6 to topic 10) from two datasets Experiments – Quality analysis of the conceptual knowledge graph A Conceptual Knowledge Graph oriented News
    0 码力 | 57 页 | 1.98 MB | 1 年前
    3
  • word文档 The DevOps Handbook

    desired outcomes. 3. Repeat iii. Intuit’s rampant innovation culture – went from 7 experiments/year to 165 experiments during the 3 month US tax season in 2010 with website conversion rates up 50% b the Analysis and Experimentation group at Microsoft: “evaluating well-designed and executed experiments that were designed to improve a key metric, only about one-third were successful at improving INTO OUR RELEASE i. A/B testing requires fast CD to support ii. Use feature toggles to control experiments, cohort creation, etc. iii. Use telemetry to measure outcomes iv. Etsy open-sourced their experimentation
    0 码力 | 8 页 | 24.02 KB | 5 月前
    3
  • pdf文档 Applicative: The Forgotten Functional Pattern

    THE OPTIMIZER SEE THROUGH ALL THIS? THROUGH ALL THIS? A: Yes (at least in my experiments) A: Yes (at least in my experiments) 56HOW DID WE DO? HOW DID WE DO? No macros? No manual control �ow? Declarative SEE SEE THROUGH ALL THIS? THROUGH ALL THIS? A: Again yes (at least in my experiments) A: Again yes (at least in my experiments) 64A CONCLUSION FROM THIS A CONCLUSION FROM THIS EXPERIMENT? EXPERIMENT
    0 码力 | 141 页 | 11.33 MB | 5 月前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    exclude the compute spent in all the intermediate steps in getting to the final model such as experiments with architectures, hyper-parameter tuning, and model performance debugging. However, since the label_smoothing parameter in the CategoricalCrossentropy loss function, which you can easily set in your experiments. Yet another way of improving generalization is to allow the model to learn concepts in the order order of their difficulty. Curriculum learning shows us how. Curriculum Learning We know from experiments and machine learning theory that increasing the size of the dataset typically helps improve quality
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    is also optimized based on an improved version of FlashAttention-2 (Dao, 2023). We conduct all experiments on a cluster equipped with NVIDIA H800 GPUs. Each node in the H800 cluster contains 8 GPUs connected ({?1, ?2, · · · , ??}) s??({?1, ?2, · · · , ??}) . (34) Training Strategy. In our preliminary experiments, we find that the RL training on reasoning data, such as code and math prompts, exhibits unique with DeepSeek-V2 Chat (SFT) and train them with either a point-wise or a pair-wise loss. In our experiments, we observe that the RL training can fully tap into and activate the potential of our model, enabling
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 A Day in the Life of a Data Scientist Conquer Machine Learning Lifecycle on Kubernetes

    and transfer learning • Automate repeatable ML experiments with containers • Deploy ML components to Kubernetes with Kubeflow • Scale and test ML experiments with Helm • Manage training jobs and pipelines Tensorflow Serving • Seldon Demo: Run TensorFlow Training with Kubeflow Demo: Scale and Test Experiments in Parallel using Kubernetes, TFJob, and Helm • Spin up pods for each variation of hyperparameters
    0 码力 | 21 页 | 68.69 MB | 1 年前
    3
共 326 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 33
前往
页
相关搜索词
03ExperimentsReproducibilityandProjectsIntroductiontoScientificWritingWS20212201StructureofPapers02ReadingPerformanceMatters盛泳WhenKnowledgeGraphmeetPythonTheDevOpsHandbookApplicativeForgottenFunctionalPatternEfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewDeepSeekV2StrongEconomicalMixtureExpertsLanguageModelKubeConChinaMLLifecycle
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩