积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(154)Weblate(118)数据库(81)后端开发(63)Python(50)PostgreSQL(40)系统运维(39)云计算&大数据(31)Django(30)VirtualBox(26)

语言

全部英语(269)中文(简体)(83)中文(繁体)(10)英语(4)法语(2)

格式

全部PDF文档 PDF(264)其他文档 其他(104)
 
本次搜索耗时 0.057 秒,为您找到相关结果约 368 个.
  • 全部
  • 综合其他
  • Weblate
  • 数据库
  • 后端开发
  • Python
  • PostgreSQL
  • 系统运维
  • 云计算&大数据
  • Django
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 法语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    together 11 Prompting techniques 13 General prompting / zero shot 13 One-shot & few-shot 15 System, contextual and role prompting 18 System prompting 19 Role prompting 21 Contextual prompting 23 Table contents Step-back prompting 25 Chain of Thought (CoT) 29 Self-consistency 32 Tree of Thoughts (ToT) 36 ReAct (reason & act) 37 Automatic Prompt Engineering 40 Code prompting 42 Prompts for writing Prompts for translating code 46 Prompts for debugging and reviewing code 48 What about multimodal prompting? 54 Best Practices 54 Provide examples 54 Design with simplicity 55 Be specific about the output
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    million的网页、大小40GB的文本。 图:GPT-2通过调整原模型和采用多任务方式来让AI更贴近“通才” 水平 GPT的发展 37 资料来源:《 Language Models are Few-Shot Learners》论文 • 预训练加微调范式中,可能在这种范式下实现的 泛化可能很差,因为该模型过于特定于训练分布, 并且在其之外无法很好地泛化。 • 微调模型在特定基准上的性能,即使名义上是人 现了强大性能 ✓ GPT-3是一个具有1750亿个参数的自回归语言模型,比之前的任何非稀疏语言模型多10倍。对于所有任务(在few-shot设置下测试其 性能),GPT-3都是在没有任何梯度更新或微调的情况下应用的,仅通过与模型的文本交互来指定任务和few-shot演示。 ✓ GPT-3在许多NLP数据集上都有很强的性能(包括翻译、问题解答和完形填空任务),以及一些需要动态推理或领域适应的任务(如解 GPT-3可以生成新闻文章样本(已很难将其与人类撰写的文章区分开来)。 图:GPT-3相关研究显示,few-shot(少量样本)的综 合表现是在无监督模式下最优的 图:GPT-3的模型参数在GPT-2的基础上增加110多倍 资料来源:《 Language Models are Few-Shot Learners》 GPT的发展 39 资料来源:《Training language models
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    official Tensorflow Hub repository8. Similarly models like GPT-3, T5, etc. have the capability to be few-shot learners. This means that they can be shown a few example inputs and outputs to solve a new task perform sentiment detection by showing it a few examples of the task. Figure 6-7: An example of few-shot learning with a large language model. One of the prominent deployment of such models is the GitHub’s achieve higher quality models with scant labeled data. In fact very large models like GPT-3 are few-shot learners, in that they can be shown a couple of examples of the task to be solved, and they can
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 01 Structure of Scientific Papers - Introduction to Scientific Writing WS2021/22

    2019  #13.4 Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, Theodoros Rekatsinas: HoloDetect: Few-Shot Learning for Error Detection. SIGMOD 2019  #13.5 Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas,
    0 码力 | 36 页 | 1.12 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    this growth sustainable with efficient deep learning. 5 Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020). 4 Devlin, Jacob, et al. "Bert: Pre-training
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    LLaMA3 70B Instruct, might not strictly adhere to the format constraints typically specified in the few-shot setting. Consequently, this can lead to underestimation of certain models in our evaluation framework
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 2022年美团技术年货 合辑

    Saliency-Aware Topic Modeling.” AAAI (2021). [55] Brown, Tom B. et al. “Language Models are Few-Shot Learners.” ArXiv abs/2005.14165 (2020): n. pag. [56] Radford, Alec, Jeff Wu, Rewon Child, David that matters: Small language models are also few-shot learners.” arXiv preprint arXiv:2009.07118 (2020). [11] Wang, Sinong, et al. “Entailment as few-shot learner.” arXiv preprint arXiv:2104.14690 (2021)
    0 码力 | 1356 页 | 45.90 MB | 1 年前
    3
  • pdf文档 Click Documentation Release 1.2.dev0

    conventions • supports loading values from environment variables out of the box • supports for prompting of custom values • is fully nestable and composable • works the same on Python 2 and 3 • supports Arguments can do less than options. The following features are only available for options: • automatic prompting for missing input • act as flags (boolean or otherwise) • option values can be pulled from environment this message and exit. 12 Chapter 1. Documentation Click Documentation, Release 1.2.dev0 1.4.8 Prompting Sometimes you want parameters that can either be provided from the command line or if not, you
    0 码力 | 64 页 | 301.16 KB | 1 年前
    3
  • pdf文档 Click Documentation Release 6.7

    conventions • supports loading values from environment variables out of the box • supports for prompting of custom values • is fully nestable and composable • works the same in Python 2 and 3 • supports Arguments can do less than options. The following features are only available for options: • automatic prompting for missing input • act as flags (boolean or otherwise) • option values can be pulled from environment Usage: digest [OPTIONS] Options: --hash-type [md5|sha1] --help Show this message and exit. 1.5.9 Prompting In some cases, you want parameters that can be provided from the command line, but if not provided
    0 码力 | 107 页 | 428.42 KB | 1 年前
    3
  • pdf文档 Click Documentation Release 5.2.dev0

    conventions • supports loading values from environment variables out of the box • supports for prompting of custom values • is fully nestable and composable • works the same in Python 2 and 3 • supports Arguments can do less than options. The following features are only available for options: • automatic prompting for missing input • act as flags (boolean or otherwise) • option values can be pulled from environment Usage: digest [OPTIONS] Options: --hash-type [md5|sha1] --help Show this message and exit. 1.5.9 Prompting In some cases, you want parameters that can be provided from the command line, but if not provided
    0 码力 | 103 页 | 416.61 KB | 1 年前
    3
共 368 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 37
前往
页
相关搜索词
GooglePromptEngineeringv7机器学习课程温州大学12深度自然语言自然语言处理嵌入EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReview01StructureofScientificPapersIntroductiontoWritingWS202122DeepSeekV2StrongEconomicalandMixtureExpertsLanguageModel2022美团技术年货合辑ClickDocumentationRelease1.2dev06.75.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩