积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1472)Python(391)Java(370)云计算&大数据(340)综合其他(334)Spring(306)数据库(213)Weblate(213)C++(208)系统运维(137)

语言

全部英语(1944)中文(简体)(459)中文(繁体)(23)日语(16)德语(12)西班牙语(12)法语(12)韩语(12)俄语(12)

格式

全部PDF文档 PDF(1951)其他文档 其他(509)TXT文档 TXT(57)PPT文档 PPT(20)DOC文档 DOC(1)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • 云计算&大数据
  • 综合其他
  • Spring
  • 数据库
  • Weblate
  • C++
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 德语
  • 西班牙语
  • 法语
  • 韩语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Heterogeneous Modern C++ with SYCL 2020

    1Michael Wong Distinguished Engineer ● Chair of SYCL Heterogeneous Programming Language ● ISO C++ Directions Group past Chair ● Past CEO OpenMP ● ISOCPP.org Director, VP http://isocpp.org/wiki/ leading team developing HIP & CUDA backends for DPC++ Background in C++ programming models for heterogeneous systems Worked on ComputeCpp (SYCL) since its inception Contributor to the Khronos SYCL standard AI/Tensor HW Other BackendsSYCL 2020 is here! Open Standard for Single Source C++ Parallel Heterogeneous Programming SYCL 2020 is released after 3 years of intense work Significant adoption in Embedded
    0 码力 | 114 页 | 7.94 MB | 5 月前
    3
  • pdf文档 Sender Patterns to Wrangle Concurrency in Embedded Devices

    Sender Patterns to Wrangle Sender Patterns to Wrangle Concurrency in Embedded Devices Concurrency in Embedded Devices Michael Caisse Michael Caisse michael.caisse@intel.com michael.caisse@intel.com
    0 码力 | 106 页 | 26.36 MB | 5 月前
    3
  • pdf文档 2.4 Go 1.4 runtime

    Go 1.4 runtime Gopher China 2015 1. Memory Allocator 2. Garbage Collector 3. Goroutine Scheduler 1. Memory Allocator 内存分配器 base on tcmalloc. 基于成熟方案,性能优秀。随着版本升级, 针对性改进,以期与垃圾回收器更好协作。 核心:自主管理,缓存复用,无锁分配。 阈值触发,并行标记,并发清理。 定期强制回收,释放物理内存。 版本升级,垃圾回收效率总是核心问题。 gogc. 阈值检查,或强制回收。 malloc next_gc 0 gogc runtime.gc() stop start mark sweep stop start mark sweep 0 2 2 1 forcegc 2m 1 mark. 暂停用户逻辑,并行标记。 scheduler thread processor goroutine max. 系统限制,允许调整。 runtime.GOMAXPROCS 调整 P 数量,会导致 G 任务队列重新分布。 M G P scheduler max = 10000 max = 256 runtime/debug.SetMaxThreads 超出限制,会导致进程崩溃。 newproc. 创建新并发任务。
    0 码力 | 29 页 | 608.57 KB | 1 年前
    3
  • pdf文档 Khronos APIs for Heterogeneous Compute and Safety: SYCL and SYCL SC

    FPGAs AMD GPUs Any CPU SYCL enables Khronos to influence ISO C++ to (eventually) support heterogeneous compute SYCL, OpenCL and SPIR-V, as open industry standards, enable flexible integration and more) Any CPU Experimental SYCL enables Khronos to influence ISO C++ to (eventually) support heterogeneous compute SYCL, OpenCL and SPIR-V, as open industry standards, enable flexible integration and EXPLORERhttps://godbolt.org/z/jdhKr7e5rExpressiveness and simplicity for heterogeneous programming in modern C++ New Features Unified Shared Memory | Parallel Reductions | Subgroup Operations | Class template
    0 码力 | 82 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Code Generation from Unified Robot Description Format for Accelerated Robotics

    Performance improvements of more than 500x overthe state-of-the-art Compilertakes in standard Unified Robot Description Format (URDF) files and generates optimized code Setup data structure to optimize
    0 码力 | 93 页 | 9.29 MB | 5 月前
    3
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    Leveraging the power of C++ for efficient machine learning on embedded devices Adrian Stanciu adrian.stanciu.pub@gmail.com CppCon, 2023 1 / 50About me ◮ I am a software engineer from Romania ◮ I have predictions ◮ Applications: ◮ Computer vision ◮ Medicine ◮ Search engines 6 / 50Embedded devices ◮ Computing devices designed to perform specific tasks within larger systems ◮ Applications: ◮ Consumer power consumption ◮ May have real-time performance constraints 7 / 50Machine learning on embedded devices ◮ Alternative to cloud-based machine learning ◮ Advantages: ◮ Real-time processing ◮ Low latency
    0 码力 | 51 页 | 1.78 MB | 5 月前
    3
  • pdf文档 Rust 异步 Runtime 的兼容层 - 施继成

    Rust 异步 Runtime 的兼容层 施继成 @ DatenLord Introduce what’s rust async runtime # Rust async runtime Analyze the reason of runtime isolation # Async runtime binding # Compatible layer 1 Create a wheel 2 3 # Rust async runtime 1 Light-weight task • Language and compiler define tasks • How to run it? • When to run it? • How does it deal with the I/O? Rust async runtime Runtime responsibilities it’s multi-thread model Rust async runtime Available Runtimes • Tokio • Async-std • Smol • Monoio Rust async runtime # Async runtime binding 2 Which runtime to choose ? • More adopters • Rich
    0 码力 | 22 页 | 957.41 KB | 1 年前
    3
  • pdf文档 Designing an ultra low-overhead multithreading runtime for Nim

    Designing an ultra low-overhead multithreading runtime for Nim Mamy Ratsimbazafy mamy@numforge.co Weave https://github.com/mratsim/weave Hello! I am Mamy Ratsimbazafy During the day blockchain/Ethereum multithreading: definitions and use-cases ◇ Parallel APIs ◇ Sources of overhead and runtime design ◇ Minimum viable runtime plan in a weekend 4 Understanding the design space Concurrency vs parallelism hardware threads The same distinctions can be done at a multithreaded language or multithreading runtime level. The problem 8 How to schedule M tasks on N hardware threads? Latency vs Throughput
    0 码力 | 37 页 | 556.64 KB | 1 年前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified Data Data Layer? 3. Why Do You Need a Real-Time Unified Data Layer? 4. 5.CrateDB: A Modern Real-Time Unified Data Layer1. Introduction Data teams are facing more challenges than ever. As applications generate and architecture teams must rethink traditional data infrastructures. The future lies in Real-Time Unified Data Layers—platforms that seamlessly support analytics, search, and AI workloads at scale. These
    0 码力 | 10 页 | 2.82 MB | 5 月前
    3
  • pdf文档 2.1.4 PingCAP Go runtime related problems in TiDB production environment

    Go runtime related problems in TiDB production environment About me ● Arthur Mao(毛康力), Senior Engineer@PingCAP ● TiDB core developer (top3 contributor) ● GitBook about golang internals (@tiancaiamao) IO is ready => goroutine wake up == 4.3ms ○ Sometime even 10ms+ latency here! ○ The time spend on runtime schedule is not negligible ● When CPU is overload, which goroutine should be given priority? Analysis longer to be scheduled ● The runtime scheduling does not consider priority ● CPU dense workload could affect IO latency Conclusion Part II - Memory control ● Go Runtime ○ Allocated from OS (mmaped)
    0 码力 | 56 页 | 50.15 MB | 5 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
HeterogeneousModernC++withSYCL2020SenderPatternstoWrangleConcurrencyinEmbeddedDevices2.4Go1.4runtimeKhronosAPIsforComputeandSafetySCCodeGenerationfromUnifiedRobotDescriptionFormatAcceleratedRoboticsLeveragingthePowerofEfficientMachineLearningon继成2023RustChinaConf异步兼容DesigninganultralowoverheadmultithreadingNimRealTimeDataLayersNewEraScalableAnalyticsSearchAI2.1PingCAPrelatedproblemsTiDBproductionenvironment
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩