Hello 算法 1.0.0b1 Java版
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10. 查找算法 152 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.2. 二分查找 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 186 页 | 14.71 MB | 1 年前3Hello 算法 1.0.0b2 Java版
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10. 查找算法 153 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. 二分查找 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 197 页 | 15.72 MB | 1 年前3Hello 算法 1.1.0 Java版
是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 378 页 | 18.47 MB | 1 年前3Hello 算法 1.0.0 Java版
复杂度分析 hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 376 页 | 17.59 MB | 1 年前3Hello 算法 1.0.0b4 Java版
增大呈线性增长。此算法的时间复杂度被称 为「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void 相较于直接统计算法运行时间,时间复杂度分析有哪些优势和局限性呢? 时间复杂度能够有效评估算法效率。例如,算法 B 的运行时间呈线性增长,在 ? > 1 时比算法 A 慢,在 ? > 1000000 时比算法 C 慢。事实上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这正是时间增长趋势所表达的含义。 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在 ++) System.out.println(0); // +1 2. 复杂度 hello‑algo.com 17 } } ?(?) 是一次函数,说明时间增长趋势是线性的,因此可以得出时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号称为「大 ? 记号 Big‑? Notation」,表示函数 ?(?) 的「渐近上界 Asymptotic Upper Bound」。0 码力 | 342 页 | 27.39 MB | 1 年前3Hello 算法 1.0.0b5 Java版
hello‑algo.com 19 图 2‑1 展示了该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 A、B 和 C : // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 376 页 | 30.69 MB | 1 年前3Hello 算法 1.2.0 简体中文 Java 版
www.hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 379 页 | 18.48 MB | 9 月前3《Java 应用与开发》课程讲义 - 王晓东
。集合类型 分类如下: 集 Set 集合中不区分元素的顺序,不允许出现重复元素。例如应用于记录所有用户名 的场合。 列表 List 集合区分元素的顺序,且允许包含重复元素。相当于数据结构中的线性表, 具体表现为数组和向量、链表、栈、队列等。 映射 Map 中保存成对的“键¡值”(Key-Value)信息,映射中不能包含重复的键,每 个键最多只能映射一个值。 注意 Java 集合中0 码力 | 330 页 | 6.54 MB | 1 年前3Hello 算法 1.2.0 繁体中文 Java 版
雜湊衝突 load factor 负载因子 負載因子 separate chaining 链式地址 鏈結位址 open addressing 开放寻址 開放定址 linear probing 线性探测 線性探查 lazy deletion 懒删除 懶刪除 binary tree 二叉树 二元樹 tree node 树节点 樹節點 left‑child node 左子节点 左子節點 right‑child0 码力 | 379 页 | 18.79 MB | 9 月前3
共 9 条
- 1